Skip to main content

Regulation of Fibrosis After Myocardial Infarction: Implications for Ventricular Remodeling

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

Abstract

Fibrosis plays a critical role in ventricular remodeling after myocardial infarction (MI). The normal physiologic response to tissue injury in mammals involves activation of the healing process that leads to repair of the injured area with a fibrotic scar over time. In the heart, healing of the damaged area of the left ventricular (LV) chamber after MI with a firm fibrous scar is essential for the chamber to continue to pump blood effectively into the tissues. Optimal healing and repair of the wounded heart with appropriate fibrosis is critical for restoration of chamber size, shape, integrity, and systolic function and survival with a favorable outcome. Dysregulated healing and repair mechanisms may lead to adverse remodeling and poor outcome. While reparative fibrosis in the infarct zone is desirable, reactive interstitial fibrosis in the non-infarct zone contributes to chamber stiffness and diastolic dysfunction. Evidence suggests that the regulation and temporal progression of fibrosis may differ in the two zones. In addition, fibrosis in the infarct and non-infarct zones may become dysregulated and contribute to mixed dilative and hypertrophic remodeling and mixed LV systolic and diastolic dysfunction. Besides reparative and reactive fibrosis in the infarcted LV, fibrosis that develops at remote sites such as the atrial and right ventricular chambers and the kidneys can influence outcome after MI. Understanding the differential mechanisms of fibrosis in the infarct, non-infarct, and remote zones may allow the development of new and improved therapeutic strategies for controlling fibrosis and improve outcome in survivors of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jugdutt BI (1985) Delayed effects of early infarct-limiting therapies on healing after myocardial infarction. Circulation 72:907–914

    Article  PubMed  CAS  Google Scholar 

  2. Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102

    Article  PubMed  CAS  Google Scholar 

  3. Jugdutt BI (1993) Prevention of ventricular remodelling post myocardial infarction: timing and duration of therapy. Can J Cardiol 9:103–114

    PubMed  CAS  Google Scholar 

  4. Jugdutt BI (1995) Modification of left ventricular remodeling after myocardial infarction. In: Dhalla NS, Beamish RE, Takeda N, Nagano M (eds) The failing heart. Lippincot-Raven, Philadelphia, PA, pp 231–245

    Google Scholar 

  5. Jugdutt BI (1996) Pharmacological intervention in post-infarction wound healing. In: Karmazyn M (ed) Myocardial ischemia: mechanisms, reperfusion, protection. Birkhauser Verlag, Basel, pp 501–512

    Chapter  Google Scholar 

  6. Jugdutt BI (1996) Prevention of ventricular remodeling after myocardial infarction and in congestive heart failure. Heart Fail Rev 1:115–129

    Article  Google Scholar 

  7. Jugdutt BI (2003) Ventricular remodeling post-infarction and the extracellular collagen matrix. When is enough enough? Circulation 108:1395–1403

    Article  PubMed  Google Scholar 

  8. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30

    Article  PubMed  CAS  Google Scholar 

  9. Jugdutt BI (2004) Extracellular matrix and cardiac remodeling. In: Villarreal FJ (ed) Interstitial fibrosis in heart failure. Springer, New York, NY, pp 23–55

    Google Scholar 

  10. Ertl G, Franz S (2005) Healing after myocardial infarction. Cardiovasc Res 66:22–32

    Article  PubMed  CAS  Google Scholar 

  11. Jugdutt BI (2008) Aging and remodeling during healing of the wounded heart: current therapies and novel drug targets. Curr Drug Targets 9:325–344

    Article  PubMed  CAS  Google Scholar 

  12. Jugdutt BI (2009) STEMI in the elderly: New insights. In: Proceedings 8th international congress on coronary artery disease: new approaches in coronary artery disease, Prague, Czech Republic, Oct 2009. Monduzzi Editore, Bologna, Italy. pp 257–263

    Google Scholar 

  13. Jugdutt BI (2011) Modulators of remodeling after myocardial infarction. In: Dhalla NS, Nagano M, Ostadal B (eds) Molecular defects in cardiovascular disease. Springer Science+Business media, Inc., New York, NY, pp 231–242

    Chapter  Google Scholar 

  14. St John Sutton M, Pfeffer MA, Moye L et al (1997) Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96:3294–3299

    Article  Google Scholar 

  15. Maggioni AP, Maseri A, Fresco C et al (1993) Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The investigators of the gruppo Italiano per lo Studio della supravvivenza nell’Infarcto Miocardico (GISSI-2). New Engl J Med 329:1442–1448

    Article  PubMed  CAS  Google Scholar 

  16. Bolognese L, Neskovic AN, Parodi G et al (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351–2357

    Article  PubMed  Google Scholar 

  17. Ferrari R, PREAMI Investigators (2006) Effects of angiotensin-converting enzyme inhibition with peridopril on left ventricular remodeling and clinical outcome. Results of the Randomized Perindopril and Remodeling Elderly with Acute Myocardial Infarction (PREAMI) Study. Arch Intern Med 166:659–666

    Article  PubMed  CAS  Google Scholar 

  18. Orn S, Manhenke C, Greve OJ, Larsen AI, Bonarjee VVS, Edvardsen T, Dickstein K (2009) Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J 30:1978–1985

    Article  PubMed  Google Scholar 

  19. Jugdutt BI (2009) Limiting fibrosis after myocardial infarction. New Engl J Med 360:1567–1569

    Article  PubMed  CAS  Google Scholar 

  20. Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1979) Myocardial infarction in the conscious dog: three dimensional mapping of infarct, collateral flow and region at risk. Circulation 60:1141–1150

    Article  PubMed  CAS  Google Scholar 

  21. Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol 70:949–958

    Article  PubMed  CAS  Google Scholar 

  22. Jugdutt BI, Tang SB, Khan MI et al (1992) Functional impact on remodeling during healing after non-Q-wave versus Q-wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722–731

    Article  PubMed  CAS  Google Scholar 

  23. Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36:959–969

    Article  PubMed  CAS  Google Scholar 

  24. Thygesen K, Alpert JS, White HD (2007) Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction. Eur Heart J 28:2525–2538

    Article  PubMed  Google Scholar 

  25. Man J, Tymchak W, Jugdutt BI (2010) Adjunctive pharmacologic treatment for acute myocardial infarction. In: Brown DL, Jeremias A (eds) Textbook of cardiac intensive care, 2nd edn. Elsevier, Philadelphia, PA, pp 1–72

    Google Scholar 

  26. Alexander KP, Newby LK, Armstrong PW et al (2007) Acute coronary care in the elderly, Part II. ST-segment-elevation myocardial infarction. A scientific statement for healthcare professionals from the American Heart Association Council for Clinical Cardiology. Circulation 115:2570–2589

    Article  PubMed  Google Scholar 

  27. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    Article  PubMed  CAS  Google Scholar 

  28. DeWood MA, Spores J, Notske R et al (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902

    Article  PubMed  CAS  Google Scholar 

  29. DeWood MA, Stifter WF, Simpson CS et al (1986) Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 315:417–423

    Article  PubMed  CAS  Google Scholar 

  30. de Feyter PJ, van den Brand M, Serruys PW, Wijns W (1985) Early angiography after myocardial infarction: what have we learned? Am Heart J 109:194–199

    Article  PubMed  Google Scholar 

  31. Panizzi P, Swirski FK, Figueiredo JL et al (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55:1629–1638

    Article  PubMed  Google Scholar 

  32. Dewald O, Ren G, Duerr GD et al (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665–677

    Article  PubMed  CAS  Google Scholar 

  33. Jelani A, Jugdutt BI (2010) STEMI and heart failure in the elderly: role of adverse remodeling. Heart Fail Rev 15:513–521

    Article  PubMed  Google Scholar 

  34. Bujak M, Kweon HJ, Chatila K et al (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392

    Article  PubMed  Google Scholar 

  35. Jugdutt BI (2008) Aging and defective healing, adverse remodeling and blunted postconditioning in the wounded heart with aging. J Am Coll Cardiol 51:1399–1403

    Article  PubMed  Google Scholar 

  36. Jugdutt BI, Palaniyappan A, Uwiera RRE, Idikio H (2009) Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Mol Cell Biochem 322:25–36

    Article  PubMed  CAS  Google Scholar 

  37. Jugdutt BI, Jelani A, Palaniyappan A et al (2010) Aging-related changes in markers of ventricular and matrix remodeling after reperfused ST-segment elevation myocardial infarction in the canine model. Effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341–351

    Article  PubMed  CAS  Google Scholar 

  38. Palaniyappan A, Idikio H, Jugdutt BI (2009) Secretory leukocyte protease inhibitor and matricellular protein modulation of post reperfused myocardial infarction healing, fibrosis and remodeling in rat model. Effect of candesartan and omapatrilat. (Abstract). Circulation 120(Suppl 2):S837

    Google Scholar 

  39. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  PubMed  CAS  Google Scholar 

  40. Frangogiannis NG (2006) The mechanistic basis of infarct healing. Antioxid Redox Signal 8:1907–1939

    Article  PubMed  CAS  Google Scholar 

  41. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173

    Article  PubMed  CAS  Google Scholar 

  42. Jugdutt BI, Michorowski B (1987) Role of infarction expansion in rupture of the ventricular septum after acute myocardial infarction. A two-dimensional echocardiography study. Clin Cardiol 10:641–652

    Article  PubMed  CAS  Google Scholar 

  43. Michorowski B, Senaratne PJM, Jugdutt BI (1987) Myocardial infarct expansion. Cardiovasc Rev Rep 8:42–47

    Google Scholar 

  44. Jugdutt BI (1987) Left ventricular rupture threshold during the healing phase after myocardial infarction in the dog. Can J Physiol Pharmacol 65:307–316

    Article  PubMed  CAS  Google Scholar 

  45. Jugdutt BI, Warnica JW (1988) Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion and complications: effect of timing, dosage and infarct location. Circulation 78:906–919

    Article  PubMed  CAS  Google Scholar 

  46. Jugdutt BI (1988) Effect of nitroglycerin and ibuprofen on left ventricular topography and rupture threshold during healing after myocardial infarction in the dog. Can J Physiol Pharmacol 66:385–395

    Article  PubMed  CAS  Google Scholar 

  47. Jugdutt BI, Basualdo CA (1989) Myocardial infarct expansion during indomethacin and ibuprofen therapy for symptomatic post-infarction pericarditis: effect of other pharmacologic agents during early remodelling. Can J Cardiol 5:211–221

    PubMed  CAS  Google Scholar 

  48. Jugdutt BI (1990) Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clin Cardiol 13:28–40

    Article  PubMed  CAS  Google Scholar 

  49. Jugdutt BI, Khan MI, Jugdutt SJ et al (1995) Impact of left ventricular unloading after late reperfusion of canine anterior myocardial infarction on remodeling and function using isosorbide-5-mononitrate. Circulation 92:926–934

    Article  PubMed  CAS  Google Scholar 

  50. Jugdutt BI (1997) Effect of reperfusion on ventricular mass, topography and function during healing of anterior infarction. Am J Physiol 272:H1205–H1211

    PubMed  CAS  Google Scholar 

  51. Jugdutt BI (2006) Modification of left ventricular geometry and function during healing after acute myocardial infarction. DM Thesis, University of Glasgow. vol 1:1–223; vol 2:1–447

    Google Scholar 

  52. Jugdutt BI, Idikio H, Uwiera R (2007) Angiotensin receptor blockade and ACE inhibition limit adverse collagen remodeling in the infarct zone and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction. Mol Cell Biochem 303:27–38

    Article  PubMed  CAS  Google Scholar 

  53. Jugdutt BI, Idikio H, Uwiera R (2007) Therapeutic drugs during healing after myocardial infarction modify infarct collagens and ventricular distensibility at elevated pressures. Mol Cell Biochem 304:79–91

    Article  PubMed  CAS  Google Scholar 

  54. Pfeffer MA, Braunwald E (1990) Ventricular remodelling after myocardial infarction. Circulation 81:1161–1172

    Article  PubMed  CAS  Google Scholar 

  55. Gaudron P, Eilles C, Kugler I et al (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755–763

    Article  PubMed  CAS  Google Scholar 

  56. Eghbali M, Tomek R, Woods C, Bhambi B (1991) Cardiac fibroblasts are predisposed to convert into myocyte phenotype: specific effect of transforming growth factor beta. Proc Natl Acad Sci USA 88:795–799

    Article  PubMed  CAS  Google Scholar 

  57. Vracko R, Thorning D (1991) Contractile cells in rat myocardial scar tissue. Lab Invest 65:214–227

    PubMed  CAS  Google Scholar 

  58. Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT (1993) Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res 27:2130–2134

    Article  PubMed  CAS  Google Scholar 

  59. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH (1993) Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88:2849–2861

    Article  PubMed  CAS  Google Scholar 

  60. Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cradiovasc Res 46:250–256

    Article  CAS  Google Scholar 

  61. Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145:868–875

    PubMed  CAS  Google Scholar 

  62. Sun Y, Cleutjens JP, Diaz-Arias AA, Weber KT (1994) Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28:1423–1432

    Article  PubMed  CAS  Google Scholar 

  63. Campbell SE, Janicki JS, Weber KT (1995) Temporal differences in fibroblast proliferation and phenotype expression in response to chronic administration of angiotensin II or aldosterone. J Mol Cell Cardiol 27:1545–1560

    Article  PubMed  CAS  Google Scholar 

  64. Sun Y, Weber KT (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858

    Article  PubMed  CAS  Google Scholar 

  65. Jugdutt BI (2007) Cyclooxygenase inhibition and ventricular remodeling after acute myocardial infarction. Circulation 115:288–291

    Article  PubMed  Google Scholar 

  66. Jugdutt BI (2008) Pleiotropic effects of cardiac drugs on healing post MI. The good, bad and ugly. Heart Fail Rev 13:439–452

    Article  PubMed  Google Scholar 

  67. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  68. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445

    Article  PubMed  Google Scholar 

  69. Maekawa Y, Anzai T, Yoshikawa T, Asakura Y, Takahashi T, Ishikawa S, Mitamura H, Ogawa S (2002) Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol 39:241–246

    Article  PubMed  Google Scholar 

  70. Jugdutt BI (2002) Monocytosis after acute myocardial infarction and left ventricular remodeling. J Am Coll Cardiol 39:247–250

    Article  PubMed  Google Scholar 

  71. Mariani M, Fetiveau R, Rossetti E et al (2006) Significance of total and differential leucocyte count in patients with acute myocardial infarction treated with primary coronary angioplasty. Eur Heart J 27:2511–2515

    Article  PubMed  Google Scholar 

  72. Jugdutt BI (2010) Preventing adverse remodeling and rupture during healing after myocardial infarction in mice and humans. Circulation 122:103–105

    Article  PubMed  Google Scholar 

  73. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108:1133–1145

    Article  PubMed  CAS  Google Scholar 

  74. Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108:1122–1132

    Article  PubMed  CAS  Google Scholar 

  75. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    Article  PubMed  CAS  Google Scholar 

  76. Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  PubMed  CAS  Google Scholar 

  77. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829

    Article  PubMed  CAS  Google Scholar 

  78. Tsujioka H, Imanishi T, Ikejima H et al (2009) Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54:130–138

    Article  PubMed  Google Scholar 

  79. Troidl C, Möllmann H, Nef H et al (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485–3496

    Article  PubMed  CAS  Google Scholar 

  80. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  81. Camelliti P, Borg TK et al (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51

    Article  PubMed  CAS  Google Scholar 

  82. Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140:845–858

    Article  PubMed  CAS  Google Scholar 

  83. Li J, Brown LF, Hibberd MG et al (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270(5 Pt 2):H1803–H1811

    PubMed  CAS  Google Scholar 

  84. Zymek P, Bujak M, Chatila K et al (2006) The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323

    Article  PubMed  CAS  Google Scholar 

  85. Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: mechanistic insights into ventricular remodeling. Circulation 94:94–101

    Article  PubMed  CAS  Google Scholar 

  86. Frangogiannis NG (2006) Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem 13:1877–1893

    Article  PubMed  CAS  Google Scholar 

  87. Bujak M, Frangogiannis NG (2007) The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  PubMed  CAS  Google Scholar 

  88. Jugdutt BI (2009) Limiting fibrosis after myocardial infarction. New Engl J Med 360:1567–1569

    Article  PubMed  CAS  Google Scholar 

  89. Shalitin N, Schlesinger H, Levy MJ et al (2009) Expression of procollagen C-proteinase enhancer in cultured rat heart fibroblasts: evidence for co-regulation with type I collagen. J Cell Biochem 90:397–407

    Article  CAS  Google Scholar 

  90. Bergmann MW (2010) WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107:1198–1208

    Article  PubMed  CAS  Google Scholar 

  91. Kobayashi K, Luo M, Zhang Y et al (2009) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11(1):46–55. doi:101038/ncb1811, 2008

    Article  PubMed  CAS  Google Scholar 

  92. Jugdutt BI, Palaniyappan A, Idikio H (2010) Candesartan suppresses increase in secreted frizzled related protein 2 and fibrosis during healing after reperfused myocardial infarction in the rat model. (Abstract). J Am Coll Cardiol 55:A123

    Google Scholar 

  93. Mirotsou M, Zhang Z, Deb A et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci 104:1643–1648

    Article  PubMed  CAS  Google Scholar 

  94. Alfaro MP, Pagni M, Vincent A et al (2008) The Wnt modulator Sfrp2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci USA 105:18366–18371

    Article  PubMed  CAS  Google Scholar 

  95. Blankesteijn WM, Essers-Janssen YP, Verluyten MJ et al (1997) A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3:541–544

    Article  PubMed  CAS  Google Scholar 

  96. Zhang Z, Deb A, Zhang Z et al (2009) Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 46:370–377

    Article  PubMed  CAS  Google Scholar 

  97. He W, Zhang L, Zhang Z et al (2010) Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci 107:21110–21115

    Article  PubMed  CAS  Google Scholar 

  98. Barandon L, Couffinhal T, Ezan J et al (2003) Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108:2282–2289

    Article  PubMed  CAS  Google Scholar 

  99. Sun Y (2009) Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 81:482–490

    Article  PubMed  CAS  Google Scholar 

  100. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530

    Article  PubMed  CAS  Google Scholar 

  101. Janicki JS, Brower GL, Gardner JD et al (2004) The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev 9:33–42

    Article  PubMed  CAS  Google Scholar 

  102. Zaidi SH, Huang Q, Momen A et al (2010) Growth differentiation factor 5 regulates cardiac repair after myocardial infarction. J Am Coll Cardiol 55:135–143

    Article  PubMed  CAS  Google Scholar 

  103. Weber KT (1997) Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 96:4065–4082

    Article  PubMed  CAS  Google Scholar 

  104. Zhang Y, DeWitt DL, McNeely TB et al (1997) Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases. J Clin Invest 99:894–900

    Article  PubMed  CAS  Google Scholar 

  105. Ashcroft GS, Lei K, Jin W et al (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med 6:1147–1153

    Article  PubMed  CAS  Google Scholar 

  106. Sano C, Shimizu T, Sato K et al (2000) Effects of secretory leukocyte protease inhibitor on the production of the anti-inflammatory cytokines, IL-10 and transforming growth factor-beta (TGF-β), by lipopolysaccharide-stimulated macrophages. Clin Exp Immunol 121:77–85

    PubMed  CAS  Google Scholar 

  107. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    PubMed  CAS  Google Scholar 

  108. Singh K, Sirokman G, Communal C et al (1999) Myocardial osteopontin expression coincides with the development of heart failure. Hypertension 33:663–670

    Article  PubMed  CAS  Google Scholar 

  109. Trueblood NA, Xie Z, Communal C et al (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087

    Article  PubMed  CAS  Google Scholar 

  110. Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8:163–173

    PubMed  CAS  Google Scholar 

  111. Masson S, Arosio B, Luvara G et al (1998) Remodelling of cardiac extracellular matrix during β-adrenergic stimulation: upregulation of SPARC in the myocardium of adult rats. J Mol Cell Cardiol 30:1501–1514

    Google Scholar 

  112. Wu RX, Laser M, Han H et al (2006) Fibroblast migration after myocardial infarction is regulated by transient SPARC expression. J Mol Med 84:241–252

    Article  PubMed  CAS  Google Scholar 

  113. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  PubMed  CAS  Google Scholar 

  114. Ge G, Greenspan DS (2006) BMP1 controls TGFβ1 activation via cleavage of latent TGFβ-binding protein. J Cell Biol 175:111–120

    Article  PubMed  CAS  Google Scholar 

  115. de Boer RA, Voors AA, Muntendam P et al (2009) Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail 11:811–817

    Article  PubMed  CAS  Google Scholar 

  116. Jugdutt BI (2010) Aging and remodeling of the renin-angiotensin system post infarction. In: Proceedings 15th World Congress on heart disease, Vancouver, 2010. Monduzzi Editore, Bologna, Italy, pp 87–91

    Google Scholar 

  117. Hu Y, Zhang H, Lu Y et al (2011) Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization. Basic Res Cardiol 106:1311–1328

    Article  PubMed  CAS  Google Scholar 

  118. Vanhoutte D, Schellings M, Pinto Y, Heymans S (2006) Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 69:604–613

    Article  PubMed  CAS  Google Scholar 

  119. Naito AT, Shiojima I, Komuro I (2010) Wnt signaling and aging-related heart disorders. Circ Res 107:1295–1303

    Article  PubMed  CAS  Google Scholar 

  120. de Boer RA, Yu L, van Veldhuisen DJ (2010) Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep 7:1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant # IAP99003 from the Canadian Institutes of Health Research, Ottawa, Ontario. I thank Catherine Jugdutt and Bernadine Jugdutt for assistance with the manuscript preparation and the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt M.D., M.Sc., D.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jugdutt, B.I. (2013). Regulation of Fibrosis After Myocardial Infarction: Implications for Ventricular Remodeling. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_29

Download citation

Publish with us

Policies and ethics