Skip to main content

Optimizing Stem Cell Therapy for Cardiac Repair Following a Myocardial Infarction

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1952 Accesses

Abstract

An extensive myocardial infarction (MI) frequently results in postinfarct remodelling which can lead to heart failure. Emergency percutaneous coronary intervention (PCI) has reduced the mortality of ST-elevation MI, and the use of beta-blockers, angiotensin-converting enzyme inhibitors (ACE inhibitors), and anticoagulants has improved the morbidity. However, progressive ventricular dysfunction is increasingly common. New treatments are urgently needed for MI survivors to prevent pathological remodelling and functional loss. Replacing the cells lost during the infarct might limit detrimental remodelling, but none of the proposed treatments has been shown to completely restore beating cardiomyocytes. Stem cell transplantation was originally proposed to replace these lost cells, but extensive animal and human studies have suggested that the benefits of cell implantation were the result of paracrine effects. Several stem cell populations which improved ventricular function in preclinical studies have also been beneficial in clinical trials to treat post-myocardial infarction remodelling. However, most of these trials had mixed results, highlighting the need for further research into the mechanisms responsible for improved cardiac function and the need to develop new treatment strategies to augment the beneficial effects of stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81:474–481

    Article  PubMed  CAS  Google Scholar 

  2. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634

    PubMed  CAS  Google Scholar 

  3. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    Article  PubMed  CAS  Google Scholar 

  4. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416

    Article  PubMed  CAS  Google Scholar 

  5. Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    PubMed  CAS  Google Scholar 

  6. Libby P, Ridker PM, Hansson GK (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138

    Article  PubMed  CAS  Google Scholar 

  7. Yla-Herttuala S, Bentzon JF, Daemen M et al (2011) Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 106:1–19

    Article  PubMed  CAS  Google Scholar 

  8. Terracciano CM, Miller LW, Yacoub MH (2010) Contemporary use of ventricular assist devices. Annu Rev Med 61:255–270

    Article  PubMed  CAS  Google Scholar 

  9. Birks EJ, Tansley PD, Hardy J et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355:1873–1884

    Article  PubMed  CAS  Google Scholar 

  10. Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443

    Article  PubMed  CAS  Google Scholar 

  11. Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101

    Article  PubMed  CAS  Google Scholar 

  12. Li RK, Jia ZQ, Weisel RD et al (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62:654–660

    Article  PubMed  CAS  Google Scholar 

  13. Chiu RC, Zibaitis A, Kao RL (1995) Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60:12–18

    PubMed  CAS  Google Scholar 

  14. Menasche P, Hagege AA, Scorsin M et al (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    Article  PubMed  CAS  Google Scholar 

  15. Farahmand P, Lai TY, Weisel RD et al (2008) Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation 118:S130–S137

    Article  PubMed  Google Scholar 

  16. Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  PubMed  Google Scholar 

  17. Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  18. Ptaszek LM, Mansour M, Ruskin JN, Chien KR (2012) Towards regenerative therapy for cardiac disease. Lancet 379:933–942

    Article  PubMed  Google Scholar 

  19. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    Article  PubMed  CAS  Google Scholar 

  20. Maltais S, Tremblay JP, Perrault LP, Ly HQ (2010) The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 3:652–662

    Article  PubMed  Google Scholar 

  21. Wagers AJ (2012) The stem cell niche in regenerative medicine. Cell Stem Cell 10:362–369

    Article  PubMed  CAS  Google Scholar 

  22. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  23. Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  CAS  Google Scholar 

  24. Assmus B, Schachinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  25. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

  26. Rosenberg M, Lutz M, Kuhl C et al (2012) Coculture with hematopoietic stem cells protects cardiomyocytes against apoptosis via paracrine activation of AKT. J Transl Med 10:115

    Article  PubMed  CAS  Google Scholar 

  27. Xaymardan M, Cimini M, Fazel S et al (2009) c-Kit function is necessary for in vitro myogenic differentiation of bone marrow hematopoietic cells. Stem Cells 27:1911–1920

    Article  PubMed  CAS  Google Scholar 

  28. Fazel S, Cimini M, Chen L et al (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116:1865–1877

    Article  PubMed  CAS  Google Scholar 

  29. Keating A (2006) Mesenchymal stromal cells. Curr Opin Hematol 13:419–425

    Article  PubMed  Google Scholar 

  30. Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109:923–940

    Article  PubMed  CAS  Google Scholar 

  31. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  PubMed  CAS  Google Scholar 

  32. Atoui R, Shum-Tim D, Chiu RC (2008) Myocardial regenerative therapy: immunologic basis for the potential “universal donor cells”. Ann Thorac Surg 86:327–334

    Article  PubMed  Google Scholar 

  33. Huang XP, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429

    Article  PubMed  CAS  Google Scholar 

  34. Richardson MR, Yoder MC (2011) Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 50:266–272

    Article  PubMed  CAS  Google Scholar 

  35. Li SH, Sun Z, Brunt KR et al (2012) Reconstitution of aged bone marrow with young cells repopulates cardiac-resident bone marrow-derived progenitor cells and prevents cardiac dysfunction after a myocardial infarction. Eur Heart J

    Google Scholar 

  36. Bolli R, Chugh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    Article  PubMed  Google Scholar 

  37. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  38. Chimenti I, Smith RR, Li TS et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980

    Article  PubMed  CAS  Google Scholar 

  39. Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  Google Scholar 

  40. Zimmet H, Porapakkham P, Porapakkham P et al (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14:91–105

    Article  PubMed  Google Scholar 

  41. Sun L, Zhang T, Lan X, Du G (2010) Effects of stem cell therapy on left ventricular remodeling after acute myocardial infarction: a meta-analysis. Clin Cardiol 33:296–302

    Article  PubMed  Google Scholar 

  42. Kan CD, Li SH, Weisel RD et al (2007) Recipient age determines the cardiac functional improvement achieved by skeletal myoblast transplantation. J Am Coll Cardiol 50:1086–1092

    Article  PubMed  Google Scholar 

  43. Zhang H, Fazel S, Tian H et al (2005) Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol 289:H2089–H2096

    Article  PubMed  CAS  Google Scholar 

  44. Zhuo Y, Li SH, Chen MS et al (2010) Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: combined consequences for cell therapy in older recipients. J Thorac Cardiovasc Surg 139:1286–1294, 1294

    Article  PubMed  Google Scholar 

  45. Brunt KR, Wu J, Chen Z et al (2012) Ex vivo Akt/HO-1 gene therapy to human endothelial progenitor cells enhances myocardial infarction recovery. Cell Transplant

    Google Scholar 

  46. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479

    Article  PubMed  CAS  Google Scholar 

  47. Quevedo HC, Hatzistergos KE, Oskouei BN et al (2009) Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 106:14022–14027

    Article  PubMed  CAS  Google Scholar 

  48. Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286

    Article  PubMed  CAS  Google Scholar 

  49. Sykes M, Nikolic B (2005) Treatment of severe autoimmune disease by stem-cell transplantation. Nature 435:620–627

    Article  PubMed  CAS  Google Scholar 

  50. Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  PubMed  CAS  Google Scholar 

  51. Wu J, Zeng F, Huang XP et al (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32:579–586

    Article  PubMed  CAS  Google Scholar 

  52. Miyagi Y, Zeng F, Huang XP et al (2010) Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold. Biomaterials 31:7684–7694

    Article  PubMed  CAS  Google Scholar 

  53. Li RK, Mickle DA, Weisel RD et al (2001) Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg 72:1957–1963

    Article  PubMed  CAS  Google Scholar 

  54. Yau TM, Fung K, Weisel RD et al (2001) Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 104:I218–I222

    Article  PubMed  CAS  Google Scholar 

  55. Reffelmann T, Konemann S, Kloner RA (2009) Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy. J Am Coll Cardiol 53:305–308

    Article  PubMed  Google Scholar 

  56. Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287:1442–1446

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Ke Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, K., Brunt, K.R., Weisel, R.D., Li, RK. (2013). Optimizing Stem Cell Therapy for Cardiac Repair Following a Myocardial Infarction. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_28

Download citation

Publish with us

Policies and ethics