Skip to main content

Intracellular Matrix Remodeling and Cardiac Function in Ischemia–Reperfusion Injury

  • Chapter
  • First Online:
Cardiac Remodeling

Abstract

The effects of ischemia on animal and human myocardium have been extensively studied during the last four decades. Myocardial ischemia followed by subsequent reperfusion can cause profound damage to cardiac myocytes through enhanced oxidative stress and intracellular Ca2+ overload. Ischemia–reperfusion injury leads to structural and functional remodeling of multiple intracellular matrix components in the cardiac myocyte. The intracellular matrix of cardiac myocytes includes major cytosolic components that include the cytoskeleton, contractile myofibrils, and subcellular organelles such as mitochondria, sarcoplasmic reticulum, and the nucleus. There are several proteolytic pathways inside the cell which may participate in cell injury and/or cell repair upon reperfusion of ischemic heart muscle. These include matrix metalloproteinases, calpains, lysosomal proteases, and the proteasome system, which are a major focus of research in ischemia–reperfusion injury. The discovery of intramyocyte matrix metalloproteinase-2 (MMP-2) and biologically relevant protein substrates of it in the intracellular matrix has shaped a new paradigm of the pathophysiological role of MMP-2 during myocardial ischemia–reperfusion injury. Emerging evidence indicates that oxidative stress can efficiently activate intracellular MMP-2 which rapidly mediates intracellular matrix remodeling of injured myocytes. This chapter will focus on the structural and functional remodeling of the intracellular matrix including the sarcomere, cytoskeleton, mitochondria, and nucleus, by proteolytic and other processes, in the context of ischemia–reperfusion (I/R) injury, with a particular emphasis on the rapidly expanding knowledge of the role of intracellular MMP-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634

    PubMed  CAS  Google Scholar 

  2. Hein S, Scheffold T, Schaper J (1995) Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J Thorac Cardiovasc Surg 110:89–98

    Article  PubMed  CAS  Google Scholar 

  3. Matsumura Y, Saeki E, Inoue M et al (1996) Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res 79:447–454

    Article  PubMed  CAS  Google Scholar 

  4. Schulz R (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 47:211–242

    Article  PubMed  CAS  Google Scholar 

  5. Ali MA, Cho WJ, Hudson B et al (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122:2039–2047

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53(Suppl 1):S12–S18

    Article  PubMed  CAS  Google Scholar 

  7. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355–362

    Article  PubMed  CAS  Google Scholar 

  8. Gao WD, Liu Y, Mellgren R, Marban E (1996) Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+  −  dependent proteolysis? Circ Res 78:455–465

    Article  PubMed  CAS  Google Scholar 

  9. McDonough JL, Arrell DK, Van Eyk JE (1999) Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 84:9–20

    Article  PubMed  CAS  Google Scholar 

  10. Barta J, Toth A, Edes I et al (2005) Calpain-1-sensitive myofibrillar proteins of the human myocardium. Mol Cell Biochem 278:1–8

    Article  PubMed  CAS  Google Scholar 

  11. Gilchrist JS, Cook T, Abrenica B et al (2010) Extensive autolytic fragmentation of membranous versus cytosolic calpain following myocardial ischemia-reperfusion. Can J Physiol Pharmacol 88:584–594

    Article  PubMed  CAS  Google Scholar 

  12. Pedrozo Z, Sanchez G, Torrealba N et al (2010) Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. Biochim Biophys Acta 1802:356–362

    Article  PubMed  CAS  Google Scholar 

  13. Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of Na+/K+  −  ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473

    Article  PubMed  CAS  Google Scholar 

  14. Ali MA, Stepanko A, Fan X et al (2012) Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 423:1–5

    Article  PubMed  CAS  Google Scholar 

  15. Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues. A tissue culture assay. Proc Natl Acad Sci USA 48:1014–1022

    Article  PubMed  CAS  Google Scholar 

  16. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    Article  PubMed  CAS  Google Scholar 

  17. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    Article  PubMed  CAS  Google Scholar 

  18. Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45:351–423

    Article  PubMed  CAS  Google Scholar 

  19. Cheung PY, Sawicki G, Wozniak M et al (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–1839

    Article  PubMed  CAS  Google Scholar 

  20. Wang W, Schulze C, Suarez-Pinzon W et al (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    Article  PubMed  CAS  Google Scholar 

  21. Coker ML, Doscher MA, Thomas CV et al (1999) Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol 277:H777–H787

    PubMed  CAS  Google Scholar 

  22. Sung MM, Schulz CG, Wang W et al (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43:429–436

    Article  PubMed  CAS  Google Scholar 

  23. Kwan JA, Schulze CJ, Wang W et al (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18:690–692

    PubMed  CAS  Google Scholar 

  24. Yang Y, Candelario-Jalil E, Thompson JF et al (2010) Increased intranuclear matrix ­metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J Neurochem 112:134–149

    Article  PubMed  CAS  Google Scholar 

  25. Lovett DH, Mahimkar R, Raffai RL et al (2012) A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One 7:e34177

    Article  PubMed  CAS  Google Scholar 

  26. Ali MA, Chow AK, Kandasamy AD et al (2012) Mechanisms of cytosolic targeting of matrix metalloproteinase-2. J Cell Physiol 227:3397–3404

    Article  PubMed  CAS  Google Scholar 

  27. Cao J, Sato H, Takino T, Seiki M (1995) The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for pro-gelatinase A activation. J Biol Chem 270:801–805

    Article  PubMed  CAS  Google Scholar 

  28. Yasmin W, Strynadka KD, Schulz R (1997) Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33:422–432

    Article  PubMed  CAS  Google Scholar 

  29. Viappiani S, Nicolescu AC, Holt A et al (2009) Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77:826–834

    Article  PubMed  CAS  Google Scholar 

  30. Sariahmetoglu M, Crawford BD, Leon H et al (2007) Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J 21:2486–2495

    Article  PubMed  CAS  Google Scholar 

  31. Golub LM, Ramamurthy N, McNamara TF et al (1984) Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease. J Periodontal Res 19:651–655

    Article  PubMed  CAS  Google Scholar 

  32. Wang GY, Bergman MR, Nguyen AP et al (2006) Cardiac transgenic matrix metalloproteinase-2 expression directly induces impaired contractility. Cardiovasc Res 69:688–696

    Article  PubMed  CAS  Google Scholar 

  33. Bergman MR, Teerlink JR, Mahimkar R et al (2007) Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol 292:H1847–H1860

    CAS  Google Scholar 

  34. Van Eyk JE, Powers F, Law W et al (1998) Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. Circ Res 82:261–271

    Article  PubMed  Google Scholar 

  35. Sawicki G, Leon H, Sawicka J et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552

    Article  PubMed  CAS  Google Scholar 

  36. Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295

    Article  PubMed  CAS  Google Scholar 

  37. Neagoe C, Kulke M, del Monte F et al (2002) Titin isoform switch in ischemic human heart disease. Circulation 106:1333–1341

    Article  PubMed  Google Scholar 

  38. Makarenko I, Opitz CA, Leake MC et al (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95:708–716

    Article  PubMed  CAS  Google Scholar 

  39. Linke WA (2010) Molecular giant vulnerable to oxidative damage: titin joins the club of proteins degraded by matrix metalloproteinase-2. Circulation 122:2002–2004

    Article  PubMed  Google Scholar 

  40. Borbely A, Falcao-Pires I, van Heerebeek L et al (2009) Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res 104:780–786

    Article  PubMed  CAS  Google Scholar 

  41. Grutzner A, Garcia-Manyes S, Kotter S et al (2009) Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J 97:825–834

    Article  PubMed  Google Scholar 

  42. LeWinter MM, Granzier H (2010) Cardiac titin: a multifunctional giant. Circulation 121:2137–2145

    Article  PubMed  Google Scholar 

  43. Morano I, Hadicke K, Grom S et al (1994) Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 26:361–368

    Article  PubMed  CAS  Google Scholar 

  44. Hein S, Scholz D, Fujitani N et al (1994) Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 26:1291–1306

    Article  PubMed  CAS  Google Scholar 

  45. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423

    Article  PubMed  CAS  Google Scholar 

  46. Galvez AS, Diwan A, Odley AM et al (2007) Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res 100:1071–1078

    Article  PubMed  CAS  Google Scholar 

  47. Zolk O, Schenke C, Sarikas A (2006) The ubiquitin-proteasome system: focus on the heart. Cardiovasc Res 70:410–421

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Li J, Zheng H, Powell SR (2011) Proteasome functional insufficiency in cardiac pathogenesis. Am J Physiol 301:H2207–H2219

    CAS  Google Scholar 

  49. Powell SR, Divald A (2010) The ubiquitin-proteasome system in myocardial ischaemia and preconditioning. Cardiovasc Res 85:303–311

    Article  PubMed  CAS  Google Scholar 

  50. Iwai K, Hori M, Kitabatake A et al (1990) Disruption of microtubules as an early sign of irreversible ischemic injury. Immunohistochemical study of in situ canine hearts. Circ Res 67:694–706

    Article  PubMed  CAS  Google Scholar 

  51. Paulin D, Li Z (2004) Desmin. A major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 301:1–7

    Article  PubMed  CAS  Google Scholar 

  52. Anesti V, Scorrano L (2006) The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta 1757:692–699

    Article  PubMed  CAS  Google Scholar 

  53. Sjuve R, Arner A, Li Z et al (1998) Mechanical alterations in smooth muscle from mice lacking desmin. J Muscle Res Cell Motil 19:415–429

    Article  PubMed  CAS  Google Scholar 

  54. Papp Z, van der Velden J, Stienen GJ (2000) Calpain-I induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of rat heart. Cardiovasc Res 45:981–993

    Article  PubMed  CAS  Google Scholar 

  55. Dalakas MC, Park KY, Semino-Mora C et al (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342:770–780

    Article  PubMed  CAS  Google Scholar 

  56. Taveau M, Bourg N, Sillon G et al (2003) Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 23:9127–9135

    Article  PubMed  CAS  Google Scholar 

  57. Pardo JV, Siliciano JD, Craig SW (1983) Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 97:1081–1088

    Article  PubMed  CAS  Google Scholar 

  58. Steenbergen C, Hill ML, Jennings RB (1987) Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ Res 60:478–486

    Article  PubMed  CAS  Google Scholar 

  59. Li H, DeRosier DJ, Nicholson WV et al (2002) Microtubule structure at 8 A resolution. Structure 10:1317–1328

    Article  PubMed  CAS  Google Scholar 

  60. Cao HM, Wang Q, You HY et al (2011) Stabilizing microtubules decreases myocardial ischaemia-reperfusion injury. J Int Med Res 39:1713–1719

    PubMed  CAS  Google Scholar 

  61. Klietsch R, Ervasti JM, Arnold W et al (1993) Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ Res 72:349–360

    Article  PubMed  CAS  Google Scholar 

  62. Armstrong SC, Latham CA, Shivell CL, Ganote CE (2001) Ischemic loss of sarcolemmal dystrophin and spectrin: correlation with myocardial injury. J Mol Cell Cardiol 33:1165–1179

    Article  PubMed  CAS  Google Scholar 

  63. Ogawa T, Sugiyama S, Hieda N et al (1989) Biochemical and morphological changes in myocardium during coronary occlusion and reperfusion in canine hearts: effects of propranolol on myocardial damage. Cardiovasc Res 23:417–423

    Article  PubMed  CAS  Google Scholar 

  64. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  PubMed  CAS  Google Scholar 

  65. Yoshikawa T, Akaishi M, Ikeda F et al (1992) Postischaemic hypercontraction is enhanced in ischaemically injured canine myocardium. Cardiovasc Res 26:337–341

    Article  PubMed  CAS  Google Scholar 

  66. Schluter KD, Schwartz P, Siegmund B, Piper HM (1991) Prevention of the oxygen paradox in hypoxic-reoxygenated hearts. Am J Physiol 261:H416–H423

    PubMed  CAS  Google Scholar 

  67. Ong S, Gustafsson AB (2012) New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res 94:190–196

    Article  PubMed  CAS  Google Scholar 

  68. Evtodienko YV, Teplova VV, Sidash SS et al (1996) Microtubule-active drugs suppress the closure of the permeability transition pore in tumour mitochondria. FEBS Lett 393:86–88

    Article  PubMed  CAS  Google Scholar 

  69. Baines CP, Liu GS, Birincioglu M et al (1999) Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. Am J Physiol 276:H1361–H1368

    PubMed  CAS  Google Scholar 

  70. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  PubMed  CAS  Google Scholar 

  71. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1298

    Article  PubMed  CAS  Google Scholar 

  72. Hom J, Sheu S (2009) Morphological dynamics of mitochondria–a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 46:811–820

    Article  PubMed  CAS  Google Scholar 

  73. Zhou HZ, Ma X, Gray MO et al (2007) Transgenic MMP-2 expression induces latent cardiac mitochondrial dysfunction. Biochem Biophys Res Commun 358:189–195

    Article  PubMed  CAS  Google Scholar 

  74. Appaix F, Kuznetsov A, Usson Y et al (2003) Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88:175–190

    Article  PubMed  CAS  Google Scholar 

  75. Wang H, Guay G, Pogan L et al (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150:1489–1498

    Article  PubMed  CAS  Google Scholar 

  76. Filippin L, Magalhães PJ, Di Benedetto G et al (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 278:39224–39234

    Article  PubMed  CAS  Google Scholar 

  77. Capetanaki Y, Bloch RJ, Kouloumenta A et al (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313:2063–2076

    Article  PubMed  CAS  Google Scholar 

  78. Chen Q, Paillard M, Gomez L et al (2011) Activation of mitochondrial μ-calpain increases AIF cleavage in cardiac mitochondria during ischemia–reperfusion. Biochem Biophys Res Commun 415:533–538

    Article  PubMed  CAS  Google Scholar 

  79. Ozaki T, Tomita H, Tamai M, Ishiguro S (2007) Characteristics of mitochondrial calpains. J Biochem 142:365–376

    Article  PubMed  CAS  Google Scholar 

  80. Martelli AM, Bareggi R, Bortul R et al (1997) The nuclear matrix and apoptosis. Histochem Cell Biol 108:1–10

    Article  PubMed  CAS  Google Scholar 

  81. Ge W, Guo R, Ren J (2011) AMP-dependent kinase and autophagic flux are involved in aldehyde dehydrogenase-2-induced protection against cardiac toxicity of ethanol. Free Radic Biol Med 51:1736–1748

    Article  PubMed  CAS  Google Scholar 

  82. Owen CA, Campbell EJ (1995) Neutrophil proteinases and matrix degradation. The cell biology of pericellular proteolysis. Semin Cell Biol 6:367–376

    Article  PubMed  CAS  Google Scholar 

  83. Martelli AM, Zweyer M, Ochs RL et al (2001) Nuclear apoptotic changes: an overview. J Cell Biochem 82:634–646

    Article  PubMed  CAS  Google Scholar 

  84. Hadler-Olsen E, Fadnes B, Sylte I et al (2011) Regulation of matrix metalloproteinase activity in health and disease. FEBS J 278:28–45

    Article  PubMed  CAS  Google Scholar 

  85. Si-Tayeb K, Monvoisin A, Mazzocco C et al (2006) Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am J Pathol 169:1390–1401

    Article  PubMed  CAS  Google Scholar 

  86. Golub LM, Lee HM, Ryan ME et al (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 12:12–26

    Article  PubMed  CAS  Google Scholar 

  87. Meier CR, Derby LE, Jick SS et al (1999) Antibiotics and risk of subsequent first-time acute myocardial infarction. JAMA 281:427–431

    Article  PubMed  CAS  Google Scholar 

  88. Yaras N, Sariahmetoglu M, Bilginoglu A et al (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155:1174–1184

    Article  PubMed  CAS  Google Scholar 

  89. Lalu MM, Gao CQ, Schulz R (2003) Matrix metalloproteinase inhibitors attenuate endotoxemia induced cardiac dysfunction: a potential role for MMP-9. Mol Cell Biochem 251:61–66

    Article  PubMed  CAS  Google Scholar 

  90. Gutierrez FR, Lalu MM, Mariano FS et al (2008) Increased activities of cardiac matrix metalloproteinases matrix metalloproteinase (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental trypanosoma cruzi infection. J Infect Dis 197:1468–1476

    Article  PubMed  CAS  Google Scholar 

  91. Hu J, Van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dawne Colwell for her professional assistance in preparing the illustrations. Research in the Schulz laboratory is supported by the Canadian Institutes of Health Research (MOP-77526 and MOP-66953). MAM received a graduate trainee award from Alberta Innovates—Health Solutions. ALBJF is supported by a fellowship award from Alberta Innovates—Health Solutions and an incentive award from the Mazankowski Alberta Heart Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fan, X., Ali, M.A.M., Hughes, B.G., Jacob-Ferreira, A.L.B., Schulz, R. (2013). Intracellular Matrix Remodeling and Cardiac Function in Ischemia–Reperfusion Injury. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_26

Download citation

Publish with us

Policies and ethics