Skip to main content

Role of SPARC in Cardiac Extracellular Matrix Remodeling After Myocardial Infarction

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1923 Accesses

Abstract

Research of the last decades has established that the cardiac extracellular matrix (ECM) is not a static but rather a dynamic environment in which the cellular and acellular components of the heart communicate and function. Remodeling after myocardial infarction (MI) associates with cardiac rupture or maladaptive left ventricular remodeling resulting in cardiac dilatation, dysfunction, and increased mortality. The dynamic synthesis and breakdown of the cardiac ECM-related proteins and the formation of a well-organized collagen scar play a major role in the structural and functional recovery of the infarcted heart. Secreted protein acidic and rich in cysteine (SPARC) is a prototypical collagen-binding matricellular protein and has been proven to coordinate procollagen processing and facilitate collagen fibril assembly in the pericellular environment. SPARC is vastly upregulated in response to cardiac stress, including MI. The lack of SPARC resulted in a fourfold higher incidence of mortality following MI, due to increased rates of cardiac rupture and heart failure, which was associated with a highly impaired and immature collagen scar. In contrast, adenoviral overexpression of SPARC improved collagen maturation in the infarct scar, associated with increased transforming growth factor (TGF)-β signaling, and prevented cardiac dilatation and dysfunction after MI. Therefore, this chapter focuses on (1) the role of SPARC during cardiac remodeling after MI and (2) the potential mechanisms involved in SPARC-mediated extracellular ­post-synthetic procollagen processing in the infarcted heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30

    Article  PubMed  CAS  Google Scholar 

  2. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511

    Article  PubMed  CAS  Google Scholar 

  3. Schellings MW, Pinto YM, Heymans S (2004) Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res 64:24–31

    Article  PubMed  CAS  Google Scholar 

  4. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    Article  PubMed  CAS  Google Scholar 

  5. Zamilpa R, Lindsey ML (2010) Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol 48:558–563

    Article  PubMed  CAS  Google Scholar 

  6. Vanhoutte D, Schellings M, Pinto Y, Heymans S (2006) Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 69:604–613

    Article  PubMed  CAS  Google Scholar 

  7. Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1395–1403

    Article  PubMed  Google Scholar 

  8. Gajarsa JJ, Kloner RA (2011) Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev 16:13–21

    Article  PubMed  Google Scholar 

  9. Lindsey ML, Mann DL, Entman ML, Spinale FG (2003) Extracellular matrix remodeling following myocardial injury. Ann Med 35:316–326

    Article  PubMed  CAS  Google Scholar 

  10. Bradshaw AD, Baicu CF, Rentz TJ et al (2010) Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol 298:H614–H622

    Article  PubMed  CAS  Google Scholar 

  11. Schellings MW, Vanhoutte D, Swinnen M et al (2009) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206:113–123

    Article  PubMed  CAS  Google Scholar 

  12. McCurdy SM, Dai Q, Zhang J et al (2011) SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 301:H497–H505

    Article  PubMed  CAS  Google Scholar 

  13. Bradshaw AD, Baicu CF, Rentz TJ et al (2009) Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 119:269–280

    Article  PubMed  CAS  Google Scholar 

  14. Bradshaw AD, Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107:1049–1054

    Article  PubMed  CAS  Google Scholar 

  15. Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signal 3:239–246

    Article  PubMed  Google Scholar 

  16. Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:816–827

    Article  PubMed  CAS  Google Scholar 

  17. Tai IT, Tang MJ (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 11:231–246

    Article  PubMed  CAS  Google Scholar 

  18. Fitzgerald MC, Schwarzbauer JE (1998) Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans. Curr Biol 8:1285–1288

    Article  PubMed  CAS  Google Scholar 

  19. Bradshaw AD, Puolakkainen P, Dasgupta J et al (2003) SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol 120:949–955

    Article  PubMed  CAS  Google Scholar 

  20. Bradshaw AD, Graves DC, Motamed K, Sage EH (2003) SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci USA 100:6045–6050

    Article  PubMed  CAS  Google Scholar 

  21. Trombetta JM, Bradshaw AD (2010) SPARC/osteonectin functions to maintain homeostasis of the collagenous extracellular matrix in the periodontal ligament. J Histochem Cytochem 58:871–879

    Article  PubMed  CAS  Google Scholar 

  22. Sasaki T, Hohenester E, Gohring W, Timpl R (1998) Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin. EMBO J 17:1625–1634

    Article  PubMed  CAS  Google Scholar 

  23. Sasaki T, Gohring W, Mann K et al (1997) Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 272:9237–9243

    Article  PubMed  CAS  Google Scholar 

  24. Sage EH, Reed M, Funk SE et al (2003) Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J Biol Chem 278:37849–37857

    Article  PubMed  CAS  Google Scholar 

  25. Dobaczewski M, Bujak M, Zymek P et al (2006) Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res 324:475–488

    Article  PubMed  CAS  Google Scholar 

  26. Komatsubara I, Murakami T, Kusachi S et al (2003) Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats. Cardiovasc Pathol 12:186–194

    Article  PubMed  CAS  Google Scholar 

  27. Ridinger H, Rutenberg C, Lutz D et al (2009) Expression and tissue localization of beta-catenin, alpha-actinin and chondroitin sulfate proteoglycan 6 is modulated during rat and human left ventricular hypertrophy. Exp Mol Pathol 86:23–31

    Article  PubMed  CAS  Google Scholar 

  28. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51(4):600–606

    Article  PubMed  CAS  Google Scholar 

  29. Francki A, Bradshaw AD, Bassuk JA et al (1999) SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. J Biol Chem 274:32145–32152

    Article  PubMed  CAS  Google Scholar 

  30. Schiemann BJ, Neil JR, Schiemann WP (2003) SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Mol Biol Cell 14:3977–3988

    Article  PubMed  CAS  Google Scholar 

  31. Frantz S, Hu K, Adamek A et al (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103:485–492

    Article  PubMed  CAS  Google Scholar 

  32. Okada H, Takemura G, Kosai K et al (2005) Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111:2430–2437

    Article  PubMed  CAS  Google Scholar 

  33. Harris BS, Zhang Y, Card L et al (2011) SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. Am J Physiol Heart Circ Physiol 301:H841–H847

    Article  PubMed  CAS  Google Scholar 

  34. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  PubMed  CAS  Google Scholar 

  35. Rentz TJ, Poobalarahi F, Bornstein P et al (2007) SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 282:22062–22071

    Article  PubMed  CAS  Google Scholar 

  36. Giudici C, Raynal N, Wiedemann H et al (2008) Mapping of SPARC/BM-40/osteonectin-binding sites on fibrillar collagens. J Biol Chem 283:19551–19560

    Article  PubMed  CAS  Google Scholar 

  37. Hohenester E, Sasaki T, Giudici C et al (2008) Structural basis of sequence-specific collagen recognition by SPARC. Proc Natl Acad Sci USA 105:18273–18277

    Article  PubMed  CAS  Google Scholar 

  38. Goldsmith EC, Hoffman A, Morales MO et al (2004) Organization of fibroblasts in the heart. Dev Dyn 230:787–794

    Article  PubMed  CAS  Google Scholar 

  39. Bishop JE, Rhodes S, Laurent GJ et al (1994) Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res 28:1581–1585

    Article  PubMed  CAS  Google Scholar 

  40. Cleutjens JP, Kandala JC, Guarda E et al (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292

    Article  PubMed  CAS  Google Scholar 

  41. Vanhoutte D, Heymans S (2010) TIMPs and cardiac remodeling: ‘Embracing the MMP-independent-side of the family’. J Mol Cell Cardiol 48:445–453

    Article  PubMed  CAS  Google Scholar 

  42. Arnold S, Mira E, Muneer S et al (2008) Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC. Exp Biol Med (Maywood) 233:860–873

    Article  CAS  Google Scholar 

  43. McClung HM, Thomas SL, Osenkowski P et al (2007) SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neurosci Lett 419:172–177

    Article  PubMed  CAS  Google Scholar 

  44. Ogata Y, Enghild JJ, Nagase H (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267:3581–3584

    PubMed  CAS  Google Scholar 

  45. Chlenski A, Guerrero LJ, Salwen HR et al (2011) Secreted protein acidic and rich in cysteine is a matrix scavenger chaperone. PLoS One 6:e23880

    Article  PubMed  CAS  Google Scholar 

  46. Schellings MW, van Almen GC, Sage EH et al (2009) Thrombospondins in the heart: potential functions in cardiac remodeling. J Cell Commun Signal 3:201–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S.H. received a Vidi grant from the Netherlands Organization for Scientific Research (NWO, 91796338) and research grants from the Netherlands Heart Foundation (2008B011), Fund of Scientific Research Flanders (FWO-Vlaanderen, G074009N), European Union, FP7-HEALTH-2010, MEDIA, large-scale integrating project, and European Union, FP7-HEALTH-2011, EU-Mascara. D.V. is supported by a fellowship of the Fund of Scientific Research Flanders (FWO-Vlaanderen, Belgium, 1208910N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davy Vanhoutte Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vanhoutte, D., Heymans, S. (2013). Role of SPARC in Cardiac Extracellular Matrix Remodeling After Myocardial Infarction. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_24

Download citation

Publish with us

Policies and ethics