Skip to main content

The Role of Growth Differentiation Factor 5 in Cardiac Repair Post-Myocardial Infarction

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1937 Accesses

Abstract

Progressive post-myocardial infarction (MI) remodelling of the heart is mediated by processes that include apoptosis, proliferation, fibrosis and hypertrophy. The regulation of pathways leading to these events can be mediated by diverse factors present in specific spatiotemporal expression patterns post-MI. The growth differentiation factors (GDFs) which are closely related to the bone morphogenetic protein (BMP) family of growth factors regulate diverse processes in many tissues including the heart. The GDF/BMPs regulate a cascade of intracellular signalling molecules to affect gene regulation in target cells. GDF/BMP signal transduction is mediated by specific receptor heteromer activation, extracellular inhibition and intracellular regulation of downstream signalling. Despite roles in cardiac development, the role of specific GDF/BMPs in post-MI processes is not well known. While GDF-5 does not appear to be involved in cardiac development, it is involved in a variety of processes mediating both acute and chronic remodelling post-MI. As a function of specific heteromeric receptor activation and resultant downstream signalling cascades, GDF-5 impacts specific pathways differentially in cardiomyocytes, cardiac fibroblasts and endothelial and vascular smooth muscle cells. GDF-5 spares cardiomyocyte apoptosis via a SMAD1/5/8-SMAD4-Bcl/Bcl-xL-mediated process, increases vascularity post-MI and decreases p38-mediated collagen production post-MI. Thus, a single growth factor is able to exert a multitude of cardioactive effects post-MI, which together represent a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng AC, Sindone AP, Wong HS, Freedman SB (2008) Differences in management and outcome of ischemic and non-ischemic cardiomyopathy. Int J Cardiol 129:198–204

    PubMed  Google Scholar 

  2. Kloner RA, Rezkalla SH (2004) Cardiac protection during acute myocardial infarction: where do we stand in 2004? J Am Coll Cardiol 44:276–286

    PubMed  Google Scholar 

  3. Frangogiannis NG (2004) Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm Res 53:585–595

    PubMed  CAS  Google Scholar 

  4. Koike MK, Frimm Cde C, Curi M (2007) Low coronary driving pressure early in the course of myocardial infarction is associated with subendocardial remodelling and left ventricular dysfunction. Int J Exp Pathol 88:279–290

    PubMed  Google Scholar 

  5. LaFramboise WA, Bombach KL, Dhir RJ et al (2005) Molecular dynamics of the compensatory response to myocardial infarct. J Mol Cell Cardiol 38:103–117

    PubMed  CAS  Google Scholar 

  6. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodelling. Circ Res 94:1543–1553

    PubMed  CAS  Google Scholar 

  7. Ohta K, Nakajima T, Cheah AY et al (2004) Elafin-overexpressing mice have improved cardiac function after myocardial infarction. Am J Physiol Heart Circ Physiol 287:H286–H292

    PubMed  CAS  Google Scholar 

  8. Tamura K, Nakajima H, Rakue H et al (1999) Elevated circulating levels of basic fibroblast growth factor and vascular endothelial growth factor in patients with acute myocardial infarction. Jpn Circ J 63:357–361

    PubMed  CAS  Google Scholar 

  9. Tao ZY, Cavasin MA, Yang F et al (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74(12):1561–1572

    PubMed  CAS  Google Scholar 

  10. Zymek P, Bujak M, Chatila K et al (2006) The role of platelet-derived growth factor signalling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323

    PubMed  CAS  Google Scholar 

  11. Saraste A, Pulkki K, Kallajoki M et al (1997) Apoptosis in human acute myocardial infarction. Circulation 95:320–323

    PubMed  CAS  Google Scholar 

  12. Sugano M, Hata T, Tsuchida K et al (2004) Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats. Mol Cell Biochem 266:127–132

    PubMed  CAS  Google Scholar 

  13. Breckenridge RA, Mohun TJ, Amaya E (2001) A role for BMP signalling in heart looping morphogenesis in Xenopus. Dev Biol 232:191–203

    PubMed  CAS  Google Scholar 

  14. Chocron S, Verhoeven MC, Rentzsch F et al (2007) Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 305:577–588

    PubMed  CAS  Google Scholar 

  15. Dunn NR, Winnier GE, Hargett LK et al (1997) Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188:235–247

    PubMed  CAS  Google Scholar 

  16. Lawson KA, Dunn NR, Roelen BA et al (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–436

    PubMed  CAS  Google Scholar 

  17. Neuhaus H, Rosen V, Thies RS (1999) Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mech Dev 80:181–184

    PubMed  CAS  Google Scholar 

  18. Schilling TF, Concordet JP, Ingham PW (1999) Regulation of left-right asymmetries in the zebrafish by Shh and BMP4. Dev Biol 210:277–287

    PubMed  CAS  Google Scholar 

  19. Somi S, Buffing AA, Moorman AF, Van Den Hoff MJ (2004) Dynamic patterns of expression of BMP isoforms 2, 4, 5, 6, and 7 during chicken heart development. Anat Rec A Discov Mol Cell Evol Biol 279:636–651

    PubMed  Google Scholar 

  20. Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122:2977–2986

    PubMed  CAS  Google Scholar 

  21. Chang SA, Lee EJ, Kang HJ et al (2008) Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: effect of acute myocardial infarction on stem cell differentiation. Stem Cells 26:1901–1912

    PubMed  CAS  Google Scholar 

  22. Rajasingh J, Bord E, Hamada H et al (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signalling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101:910–918

    PubMed  CAS  Google Scholar 

  23. Zaidi SH, Huang Q, Momen A et al (2010) Growth differentiation factor 5 regulates cardiac repair after myocardial infarction. J Am Coll Cardiol 55:135–143

    PubMed  CAS  Google Scholar 

  24. Innis CA, Shi J, Blundell TL (2000) Evolutionary trace analysis of TGF-beta and related growth factors: implications for site-directed mutagenesis. Protein Eng 13:839–847

    PubMed  CAS  Google Scholar 

  25. Rider CC, Mulloy B (2010) Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 429:1–12

    PubMed  CAS  Google Scholar 

  26. Sanchez NS, Barnett JV (2012) TGFbeta and BMP-2 regulate epicardial cell invasion via TGFbetaR3 activation of the Par6/Smurf1/RhoA pathway. Cell Signal 24:539–548

    PubMed  CAS  Google Scholar 

  27. Wall NA, Craig EJ, Labosky PA, Kessler DS (2000) Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene. Dev Biol 227:495–509

    PubMed  CAS  Google Scholar 

  28. Rankin CT, Bunton T, Lawler AM, Lee SJ (2000) Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 24:262–265

    PubMed  CAS  Google Scholar 

  29. Kaasinen E, Aittomaki K, Eronen M et al (2010) Recessively inherited right atrial isomerism caused by mutations in growth/differentiation factor 1 (GDF1). Hum Mol Genet 19:2747–2753

    PubMed  CAS  Google Scholar 

  30. Karkera JD, Lee JS, Roessler E et al (2007) Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet 81:987–994

    PubMed  CAS  Google Scholar 

  31. Hsiao EC, Koniaris LG, Zimmers-Koniaris T et al (2000) Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol 20:3742–3751

    PubMed  CAS  Google Scholar 

  32. Coleman CM, Loredo GA, Lo CW, Tuan RS (2003) Correlation of GDF5 and connexin 43 mRNA expression during embryonic development. Anat Rec A Discov Mol Cell Evol Biol 275:1117–1121

    PubMed  Google Scholar 

  33. Storm EE, Huynh TV, Copeland NG et al (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 368:639–643

    PubMed  CAS  Google Scholar 

  34. Sullivan AM, O’Keeffe GW (2005) The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson’s disease treatment. J Anat 207:219–226

    PubMed  CAS  Google Scholar 

  35. Sharma M, Kambadur R, Matthews KG et al (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9

    PubMed  CAS  Google Scholar 

  36. Fairlie WD, Moore AG, Bauskin AR et al (1999) MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 65:2–5

    PubMed  CAS  Google Scholar 

  37. Yamagishi T, Nakajima Y, Nishimatsu S et al (2001) Expression of bone morphogenetic protein-5 gene during chick heart development: possible roles in valvuloseptal endocardial cushion formation. Anat Rec 264:313–316

    PubMed  CAS  Google Scholar 

  38. Kim RY, Robertson EJ, Solloway MJ (2001) Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 235:449–466

    PubMed  CAS  Google Scholar 

  39. Chen H, Shi S, Acosta L et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    PubMed  CAS  Google Scholar 

  40. Allen SP, Bogardi JP, Barlow AJ et al (2001) Misexpression of noggin leads to septal defects in the outflow tract of the chick heart. Dev Biol 235:98–109

    PubMed  CAS  Google Scholar 

  41. Choi M, Stottmann RW, Yang YP et al (2007) The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res 100:220–228

    PubMed  CAS  Google Scholar 

  42. Moskowitz IP, Wang J, Peterson MA et al (2011) Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. Proc Natl Acad Sci USA 108:4006–4011

    PubMed  CAS  Google Scholar 

  43. Azhar M, Wang PY, Frugier T et al (2010) Myocardial deletion of Smad4 using a novel alpha skeletal muscle actin Cre recombinase transgenic mouse causes misalignment of the cardiac outflow tract. Int J Biol Sci 6:546–555

    PubMed  CAS  Google Scholar 

  44. Song L, Zhao M, Wu B et al (2011) Cell autonomous requirement of endocardial Smad4 during atrioventricular cushion development in mouse embryos. Dev Dyn 240:211–220

    PubMed  CAS  Google Scholar 

  45. Chang H, Huylebroeck D, Verschueren K et al (1999) Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126:1631–1642

    PubMed  CAS  Google Scholar 

  46. Yang X, Castilla LH, Xu X et al (1999) Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126:1571–1580

    PubMed  CAS  Google Scholar 

  47. Umans L, Cox L, Tjwa M et al (2007) Inactivation of Smad5 in endothelial cells and smooth muscle cells demonstrates that Smad5 is required for cardiac homeostasis. Am J Pathol 170:1460–1472

    PubMed  CAS  Google Scholar 

  48. Wang YX, Qian LX, Liu D et al (2007) Bone morphogenetic protein-2 acts upstream of myocyte-specific enhancer factor 2a to control embryonic cardiac contractility. Cardiovasc Res 74:290–303

    PubMed  CAS  Google Scholar 

  49. Beppu H, Kawabata M, Hamamoto T et al (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    PubMed  CAS  Google Scholar 

  50. Delot EC, Bahamonde ME, Zhao M, Lyons KM (2003) BMP signalling is required for septation of the outflow tract of the mammalian heart. Development 130:209–220

    PubMed  CAS  Google Scholar 

  51. Gaussin V, Van de Putte T, Mishina Y et al (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 99:2878–2883

    PubMed  CAS  Google Scholar 

  52. Buxton P, Edwards C, Archer CW, Francis-West P (2001) Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg Am 83-A(Suppl 1 (Pt 1)):S23–S30

    PubMed  Google Scholar 

  53. Chang SC, Hoang B, Thomas JT et al (1994) Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem 269:28227–28234

    PubMed  CAS  Google Scholar 

  54. O’Keeffe GW, Hanke M, Pohl J, Sullivan AM (2004) Expression of growth differentiation factor-5 in the developing and adult rat brain. Brain Res Dev Brain Res 151:199–202

    PubMed  Google Scholar 

  55. Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122:3969–3979

    PubMed  CAS  Google Scholar 

  56. Zhang S, Fantozzi I, Tigno DD et al (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L740–L754

    PubMed  CAS  Google Scholar 

  57. Storm EE, Kingsley DM (1999) GDF5 coordinates bone and joint formation during digit development. Dev Biol 209:11–27

    PubMed  CAS  Google Scholar 

  58. Chhabra A, Tsou D, Clark RT et al (2003) GDF-5 deficiency in mice delays Achilles tendon healing. J Orthop Res 21:826–835

    PubMed  CAS  Google Scholar 

  59. Faiyaz-Ul-Haque M, Ahmad W, Wahab A et al (2002) Frameshift mutation in the cartilage-derived morphogenetic protein 1 (CDMP1) gene and severe acromesomelic chondrodysplasia resembling Grebe-type chondrodysplasia. Am J Med Genet 111:31–37

    PubMed  Google Scholar 

  60. Faiyaz-Ul-Haque M, Ahmad W, Zaidi SH et al (2002) Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome). Clin Genet 61:454–458

    PubMed  CAS  Google Scholar 

  61. Faiyaz-Ul-Haque M, Faqeih EA, Al-Zaidan H et al (2008) Grebe-type chondrodysplasia: a novel missense mutation in a conserved cysteine of the growth differentiation factor 5. J Bone Miner Metab 26:648–652

    PubMed  CAS  Google Scholar 

  62. Thomas JT, Kilpatrick MW, Lin K et al (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17:58–64

    PubMed  CAS  Google Scholar 

  63. Yamashita H, Shimizu A, Kato M et al (1997) Growth/differentiation factor-5 induces angiogenesis in vivo. Exp Cell Res 235:218–226

    PubMed  CAS  Google Scholar 

  64. Chen X, Zankl A, Niroomand F et al (2006) Upregulation of ID protein by growth and differentiation factor 5 (GDF5) through a smad-dependent and MAPK-independent pathway in HUVSMC. J Mol Cell Cardiol 41:26–33

    PubMed  Google Scholar 

  65. Kadomatsu H, Matsuyama T, Yoshimoto T et al (2008) Injectable growth/differentiation factor-5-recombinant human collagen composite induces endochondral ossification via Sry-related HMG box 9 (Sox9) expression and angiogenesis in murine calvariae. J Periodontal Res 43:483–489

    PubMed  CAS  Google Scholar 

  66. Sena K, Sumner DR, Virdi AS (2007) Modulation of VEGF expression in rat bone marrow stromal cells by GDF-5. Connect Tissue Res 48:324–331

    PubMed  CAS  Google Scholar 

  67. Zeng Q, Li X, Beck G et al (2007) Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone 40:374–381

    PubMed  CAS  Google Scholar 

  68. Upton PD, Long L, Trembath RC, Morrell NW (2008) Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells. Mol Pharmacol 73:539–552

    PubMed  CAS  Google Scholar 

  69. Liu Z, Shen J, Pu K et al (2009) GDF5 and BMP2 inhibit apoptosis via activation of BMPR2 and subsequent stabilization of XIAP. Biochim Biophys Acta 1793:1819–1827

    PubMed  CAS  Google Scholar 

  70. Nishitoh H, Ichijo H, Kimura M et al (1996) Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 271:21345–21352

    PubMed  CAS  Google Scholar 

  71. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    PubMed  CAS  Google Scholar 

  72. Garg RR, Bally-Cuif L, Lee SE et al (1999) Cloning of zebrafish activin type IIB receptor (ActRIIB) cDNA and mRNA expression of ActRIIB in embryos and adult tissues. Mol Cell Endocrinol 153:169–181

    PubMed  CAS  Google Scholar 

  73. Izumi M, Fujio Y, Kunisada K et al (2001) Bone morphogenetic protein-2 inhibits serum deprivation-induced apoptosis of neonatal cardiac myocytes through activation of the Smad1 pathway. J Biol Chem 276:31133–31141

    PubMed  CAS  Google Scholar 

  74. Guo J, Wu G (2012) The signalling and functions of heterodimeric bone morphogenetic proteins. Cytokine Growth Factor Rev 23:61–67

    PubMed  CAS  Google Scholar 

  75. Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signalling complex of a TGF-beta superfamily member. Proc Natl Acad Sci USA 103:7643–7648

    PubMed  CAS  Google Scholar 

  76. Keller S, Nickel J, Zhang JL et al (2004) Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol 11:481–488

    PubMed  CAS  Google Scholar 

  77. Seemann P, Schwappacher R, Kjaer KW et al (2005) Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Invest 115:2373–2381

    PubMed  CAS  Google Scholar 

  78. Nickel J, Kotzsch A, Sebald W, Mueller TD (2005) A single residue of GDF-5 defines binding specificity to BMP receptor IB. J Mol Biol 349:933–947

    PubMed  CAS  Google Scholar 

  79. Seemann P, Brehm A, Konig J et al (2009) Mutations in GDF5 reveal a key residue mediating BMP inhibition by NOGGIN. PLoS Genet 5:e1000747

    PubMed  Google Scholar 

  80. Saremba S, Nickel J, Seher A et al (2008) Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand. FEBS J 275:172–183

    PubMed  CAS  Google Scholar 

  81. Moustakas A, Heldin CH (2002) From mono- to oligo-Smads: the heart of the matter in TGF-beta signal transduction. Genes Dev 16(15):1867–1871

    PubMed  CAS  Google Scholar 

  82. Mazerbourg S, Hsueh AJ (2006) Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Hum Reprod Update 12:373–383

    PubMed  CAS  Google Scholar 

  83. Shi Y, Hata A, Lo RS et al (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388:87–93

    PubMed  CAS  Google Scholar 

  84. Luyten FP (1997) Cartilage-derived morphogenetic protein-1. Int J Biochem Cell Biol 29(11):1241–1244

    PubMed  CAS  Google Scholar 

  85. Yndestad A, Ueland T, Oie E et al (2004) Elevated levels of activin A in heart failure: potential role in myocardial remodelling. Circulation 109:1379–1385

    PubMed  CAS  Google Scholar 

  86. Hassel S, Eichner A, Yakymovych M et al (2004) Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4:1346–1358

    PubMed  CAS  Google Scholar 

  87. Coleman CM, Tuan RS (2003) Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 120:823–836

    PubMed  CAS  Google Scholar 

  88. Nakamura K, Shirai T, Morishita S et al (1999) p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res 250:351–363

    PubMed  CAS  Google Scholar 

  89. Yang X, Lee PJ, Long L et al (2007) BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. Am J Respir Cell Mol Biol 37:598–605

    PubMed  CAS  Google Scholar 

  90. Ahn K, Mishina Y, Hanks MC et al (2001) BMPR-IA signalling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 128:4449–4461

    PubMed  CAS  Google Scholar 

  91. Mishina Y, Hanks MC, Miura S et al (2002) Generation of Bmpr/Alk3 conditional knockout mice. Genesis 32:69–72

    PubMed  CAS  Google Scholar 

  92. Stottmann RW, Choi M, Mishina Y et al (2004) BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development 131:2205–2218

    PubMed  CAS  Google Scholar 

  93. Jiao K, Kulessa H, Tompkins K et al (2003) An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev 17:2362–2367

    PubMed  CAS  Google Scholar 

  94. Schneider MD, Gaussin V, Lyons KM (2003) Tempting fate: BMP signals for cardiac morphogenesis. Cytokine Growth Factor Rev 14:1–4

    PubMed  CAS  Google Scholar 

  95. Hao J, Ju H, Zhao S et al (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31:667–678

    PubMed  CAS  Google Scholar 

  96. Hao J, Wang B, Jones SC et al (2000) Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol Heart Circ Physiol 279(6):H3020–H3030

    PubMed  CAS  Google Scholar 

  97. Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71:418–435

    PubMed  CAS  Google Scholar 

  98. Wang B, Hao J, Jones SC et al (2002) Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol 282:H1685–H1696

    PubMed  CAS  Google Scholar 

  99. Chuva de Sousa Lopes SM, Feijen A, Korving J et al (2004) Connective tissue growth factor expression and Smad signalling during mouse heart development and myocardial infarction. Dev Dyn 231:542–550

    PubMed  CAS  Google Scholar 

  100. Masaki M, Izumi M, Oshima Y et al (2005) Smad1 protects cardiomyocytes from ischemia-reperfusion injury. Circulation 111:2752–2759

    PubMed  CAS  Google Scholar 

  101. Bujak M, Ren G, Kweon HJ et al (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodelling. Circulation 116:2127–2138

    PubMed  CAS  Google Scholar 

  102. Dobaczewski M, Bujak M, Li N et al (2010) Smad3 signalling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428

    PubMed  CAS  Google Scholar 

  103. Ghosh-Choudhury N, Abboud SL, Chandrasekar B (2003) Ghosh Choudhury G. BMP-2 regulates cardiomyocyte contractility in a phosphatidylinositol 3 kinase-dependent manner. FEBS Lett 544:181–184

    PubMed  CAS  Google Scholar 

  104. Kempf T, Horn-Wichmann R, Brabant G et al (2007) Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem 53(2):284–291

    PubMed  CAS  Google Scholar 

  105. Xu J, Kimball TR, Lorenz JN et al (2006) GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res 98:342–350

    PubMed  CAS  Google Scholar 

  106. Behfar A, Zingman LV, Hodgson DM et al (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16:1558–1566

    PubMed  Google Scholar 

  107. Artaza JN, Reisz-Porszasz S, Dow JS et al (2007) Alterations in myostatin expression are associated with changes in cardiac left ventricular mass but not ejection fraction in the mouse. J Endocrinol 194:63–76

    PubMed  CAS  Google Scholar 

  108. McKoy G, Bicknell KA, Patel K, Brooks G (2007) Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation. Cardiovasc Res 74:304–312

    PubMed  CAS  Google Scholar 

  109. Rodgers BD, Interlichia JP, Garikipati DK et al (2009) Myostatin represses physiological hypertrophy of the heart and excitation-contraction coupling. J Physiol 587:4873–4886

    PubMed  CAS  Google Scholar 

  110. Kempf T, Eden M, Strelau J et al (2006) The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98:351–360

    PubMed  CAS  Google Scholar 

  111. Kempf T, Zarbock A, Widera C et al (2011) GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17:581–588

    PubMed  CAS  Google Scholar 

  112. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signalling in myocardial infarction and cardiac remodelling. Cardiovasc Res 74:184–195

    PubMed  CAS  Google Scholar 

  113. Okada H, Takemura G, Kosai K et al (2005) Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodelling and heart failure. Circulation 111:2430–2437

    PubMed  CAS  Google Scholar 

  114. Deten A, Holzl A, Leicht M et al (2001) Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol 33:1191–1207

    PubMed  CAS  Google Scholar 

  115. See F, Kompa A, Martin J et al (2005) Fibrosis as a therapeutic target post-myocardial infarction. Curr Pharm Des 11:477–487

    PubMed  CAS  Google Scholar 

  116. Thune JJ, Solomon SD (2006) Left ventricular diastolic function following myocardial infarction. Curr Heart Fail Rep 3:170–174

    PubMed  Google Scholar 

  117. Ambrosino C, Iwata T, Scafoglio C et al (2006) TEF-1 and C/EBPbeta are major p38alpha MAPK-regulated transcription factors in proliferating cardiomyocytes. Biochem J 396:163–172

    PubMed  CAS  Google Scholar 

  118. Tenhunen O, Soini Y, Ilves M et al (2006) p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and anti-apoptotic mechanisms. FASEB J 20:1907–1909

    PubMed  CAS  Google Scholar 

  119. Yoshimoto T, Yamamoto M, Kadomatsu H et al (2006) Recombinant human growth/differentiation factor-5 (rhGDF-5) induced bone formation in murine calvariae. J Periodontal Res 41:140–147

    PubMed  CAS  Google Scholar 

  120. Delyani JA, Robinson EL, Rudolph AE (2001) Effect of a selective aldosterone receptor antagonist in myocardial infarction. Am J Physiol Heart Circ Physiol 281:H647–H654

    PubMed  CAS  Google Scholar 

  121. Lal A, Veinot JP, Leenen FH (2004) Critical role of CNS effects of aldosterone in cardiac remodelling post-myocardial infarction in rats. Cardiovasc Res 64:437–447

    PubMed  CAS  Google Scholar 

  122. Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    PubMed  CAS  Google Scholar 

  123. Machado RD, Pauciulo MW, Thomson JR et al (2001) BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 68:92–102

    PubMed  CAS  Google Scholar 

  124. Liu W, Selever J, Wang D et al (2004) Bmp4 signalling is required for outflow-tract septation and branchial-arch artery remodelling. Proc Natl Acad Sci USA 101(13):4489–4494

    PubMed  CAS  Google Scholar 

  125. Mohler ER 3rd, Gannon F, Reynolds C et al (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528

    PubMed  Google Scholar 

  126. Dhore CR, Cleutjens JP, Lutgens E et al (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1998–2003

    PubMed  CAS  Google Scholar 

  127. Solloway MJ, Robertson EJ (1999) Early embryonic lethality in Bmp5; Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126:1753–1768

    PubMed  CAS  Google Scholar 

  128. Wollert KC, Kempf T, Peter T et al (2007) Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation 115:962–971

    PubMed  CAS  Google Scholar 

  129. Galvin KM, Donovan MJ, Lynch CA et al (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174

    PubMed  CAS  Google Scholar 

  130. Vargesson N, Laufer E (2001) Smad7 misexpression during embryonic angiogenesis causes vascular dilation and malformations independently of vascular smooth muscle cell function. Dev Biol 240:499–516

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Husain M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shikatani, E.A., Husain, M. (2013). The Role of Growth Differentiation Factor 5 in Cardiac Repair Post-Myocardial Infarction. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_21

Download citation

Publish with us

Policies and ethics