Skip to main content

Role of MicroRNAs in Cardiac Hypertrophy and Postinfarction Remodeling

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1943 Accesses

Abstract

A family of small noncoding RNAs, termed microRNAs (miRNAs), plays critical roles in multiple physiological and pathological processes by ­negatively modulating gene expression at the posttranscriptional level. Cardiac hypertrophy and myocardial infarction, which are among the major causes of heart failure, have been found to be accompanied by dysregulated expression of miRNAs, suggesting that miRNA-mediated gene regulation is involved in cardiovascular ­pathogenesis. Loss- and gain-of-function studies by genetic or pharmacological manipulation of individual miRNAs further reveal that these small RNAs play critical regulatory roles in hypertrophy and postinfarction remodeling. Numerous miRNAs are cardiac protective, while some others are apparently detrimental during cardiac remodeling. Intriguingly, the functional consequences of some miRNAs in the heart appear to be cell type specific. Although the biological functions and molecular mechanisms of most miRNAs still remain elusive, their key regulatory roles in cardiac pathogenesis make them promising targets for therapeutic intervention. Here, we summarize the recent progress made in understanding the function and mechanisms of individual miRNAs in cardiac hypertrophy and postinfarction remodeling. The biological and clinical implications of miRNAs in the cardiovascular system are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846–860

    Article  PubMed  CAS  Google Scholar 

  2. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  3. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples micro-RNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  PubMed  CAS  Google Scholar 

  4. Ikeda S, Kong SW, Lu J (2007) Altered microRNA expression in human heart disease. Physiol Genom 31:367–373

    Article  CAS  Google Scholar 

  5. Sayed D, Hong C, Chen IY et al (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424

    Article  PubMed  CAS  Google Scholar 

  6. van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260

    Article  PubMed  Google Scholar 

  7. Tatsuguchi M, Seok H, Callis TE et al (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141

    Article  PubMed  CAS  Google Scholar 

  8. Chen JF, Murchison EP, Tang R et al (2008) Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105:2111–2116

    Article  PubMed  CAS  Google Scholar 

  9. da Costa Martins PA, Bourajjaj M, Gladka M et al (2008) Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118:1567–1576

    Article  PubMed  Google Scholar 

  10. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187

    Article  PubMed  CAS  Google Scholar 

  11. Small EM, Frost RJ, Olson EN (2010) MicroRNAs add a new dimension to cardiovascular disease. Circulation 121:1022–1032

    Article  PubMed  Google Scholar 

  12. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  PubMed  CAS  Google Scholar 

  13. Childs TJ, Adams MA, Mak AS (1990) Regression of cardiac hypertrophy in spontaneously hypertensive rats by enalapril and the expression of contractile proteins. Hypertension 16:662–668

    Article  PubMed  CAS  Google Scholar 

  14. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  15. Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  16. Sussman MA, Lim HW, Gude N et al (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693

    Article  PubMed  CAS  Google Scholar 

  17. Braz JC, Bueno OF, Liang Q et al (2003) Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest 111:1475–1486

    PubMed  CAS  Google Scholar 

  18. Sugden PH (2003) Ras, Akt, and mechanotransduction in the cardiac myocyte. Circ Res 93:1179–1192

    Article  PubMed  CAS  Google Scholar 

  19. Streicher JM, Ren S, Herschman H, Wang Y (2010) MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 106:1434–1443

    Article  PubMed  CAS  Google Scholar 

  20. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  PubMed  CAS  Google Scholar 

  21. Wang Z, Lu Y, Yang B (2011) MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res 89:710–721

    Article  PubMed  CAS  Google Scholar 

  22. Rao PK, Toyama Y, Chiang HR et al (2009) Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 105:585–594

    Article  PubMed  CAS  Google Scholar 

  23. Ikeda S, He A, Kong SW et al (2009) MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29:2193–2204

    Article  PubMed  CAS  Google Scholar 

  24. Elia L, Contu R, Quintavalle M et al (2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120:2377–2385

    Article  PubMed  CAS  Google Scholar 

  25. Care A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  PubMed  CAS  Google Scholar 

  26. Li Q, Lin X, Yang X, Chang J (2010) NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol 298:1340–1347

    Article  Google Scholar 

  27. Liu N, Bezprozvannaya S, Williams AH et al (2008) MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254

    Article  PubMed  CAS  Google Scholar 

  28. Yang Y, Ago T, Zhai P et al (2011) Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108:305–313

    Article  PubMed  CAS  Google Scholar 

  29. Wang K, Long B, Zhou J, Li PF (2010) miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem 285:11903–11912

    Article  PubMed  CAS  Google Scholar 

  30. Zhang J, Chintalgattu V, Shih T et al (2011) MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes. J Mol Cell Cardiol 51:337–436

    Article  PubMed  CAS  Google Scholar 

  31. Callis TE, Pandya K, Seok HY et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786

    Article  PubMed  CAS  Google Scholar 

  32. van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 216:575–579

    Article  Google Scholar 

  33. van Rooij E, Quiat D, Johnson BA et al (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673

    Article  PubMed  Google Scholar 

  34. Shieh JT, Huang Y, Gilmore J, Srivastava D (2011) Elevated miR-499 levels blunt the cardiac stress response. PLoS One 6:e19481

    Article  PubMed  CAS  Google Scholar 

  35. Wang JX, Jiao JQ, Li Q et al (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78

    Article  PubMed  Google Scholar 

  36. Rane S, He M, Sayed D et al (2010) An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal 22:1054–1062

    Article  PubMed  CAS  Google Scholar 

  37. da Costa Martins PA, Salic K, Gladka MM et al (2010) MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol 12:1220–1227

    Article  PubMed  Google Scholar 

  38. Lin Z, Murtaza I, Wang K et al (2009) miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA 106:12103–12108

    Article  PubMed  CAS  Google Scholar 

  39. Wang K, Lin Z, Long B et al (2012) Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem 287:589–599

    Article  PubMed  CAS  Google Scholar 

  40. Tang Y, Zhen J, Sun Y et al (2009) MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Inter Heart J 50:377–387

    Article  CAS  Google Scholar 

  41. Bostjancic E, Zidar N, Glavac D (2009) MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers 27:255–268

    PubMed  CAS  Google Scholar 

  42. Xu C, Lu Y, Pan Z et al (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052

    Article  PubMed  CAS  Google Scholar 

  43. van Rooij E, Sutherland LB, Thatcher JE et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105:13027–13032

    Article  PubMed  Google Scholar 

  44. Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140

    Article  PubMed  CAS  Google Scholar 

  45. Ye Y, Hu Z, Lin Y et al (2010) Downregulation of microRNA-29 by antisense inhibitors and a PPAR-g agonist protects against myocardial ischaemia–reperfusion injury. Cardiovasc Res 87:535–544

    Article  PubMed  CAS  Google Scholar 

  46. Wang H, Garzon R, Sun H et al (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14:369–381

    Article  PubMed  CAS  Google Scholar 

  47. Park SY, Lee JH, Ha M et al (2009) miR-29 miRNAs activate p53 by targeting p85a and CDC42. Nat Struct Mol Biol 16:23–29

    Article  PubMed  CAS  Google Scholar 

  48. Zhu H, Fan G (2012) Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res 94:284–292

    Article  PubMed  CAS  Google Scholar 

  49. Cheng Y, Liu X, Zhang S et al (2009) MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47:5–14

    Article  PubMed  CAS  Google Scholar 

  50. Cheng Y, Zhu P, Yang J et al (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Research 87:431–439

    Article  CAS  Google Scholar 

  51. Sayed D, He M, Hong C et al (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285:20281–20290

    Article  PubMed  CAS  Google Scholar 

  52. Dong S, Cheng Y, Yang J et al (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284:29514–29525

    Article  PubMed  CAS  Google Scholar 

  53. Thum T, Gross C, Fiedler J et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984

    Article  PubMed  CAS  Google Scholar 

  54. Roy S, Khanna S, Hussain SR et al (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82:21–29

    Article  PubMed  CAS  Google Scholar 

  55. Sabatel C, Malvaux L, Bovy N et al (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One 6:e16979

    Article  PubMed  CAS  Google Scholar 

  56. Patrick DM, Montgomery R, Qi X et al (2010) Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest 120:3912–3916

    Article  PubMed  CAS  Google Scholar 

  57. Wang S, Aurora A, Johnson BA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271

    Article  PubMed  Google Scholar 

  58. van Solingen C, Seghers L, Bijkerk R et al (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13:1577–1585

    Article  PubMed  Google Scholar 

  59. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  PubMed  CAS  Google Scholar 

  60. Zernecke A, Bidzhekov K, Noels H et al (2009) Delivery of microRNA-126 by apoptotic ­bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81

    Article  PubMed  Google Scholar 

  61. Fiedler J, Jazbutyte V, Kirchmaier BC et al (2011) MicroRNA-24 Regulates Vascularity After Myocardial Infarction. Circulation 124:720–730

    Article  PubMed  CAS  Google Scholar 

  62. Qian L, Van Laake L, Huang Y et al (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208:549–560

    Article  PubMed  CAS  Google Scholar 

  63. Wang J, Huang W, Xu R et al (2012) MicroRNA-24 Regulates Cardiac Fibrosis after Myocardial Infarction. J Cell Mol Med 16(9):2150–2160. doi:10.1111/j.1582-4934.2012.01523.x

    Article  PubMed  CAS  Google Scholar 

  64. Rane S, He M, Sayed D et al (2009) Downregulation of miR-199a derepresses hypoxia-­inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886

    Article  PubMed  CAS  Google Scholar 

  65. Karreth FA, Tay Y, Perna D et al (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395

    Article  PubMed  CAS  Google Scholar 

  66. Tay Y, Kats L, Salmena L et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357

    Article  PubMed  CAS  Google Scholar 

  67. Sumazin P, Yang X, Chiu HS et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–381

    Article  PubMed  CAS  Google Scholar 

  68. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  PubMed  CAS  Google Scholar 

  69. Aurora AB, Mahmoud AI, Luo X et al (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest 122:1222–1232

    Article  PubMed  CAS  Google Scholar 

  70. van Mil A, Grundmann S, Goumans MJ et al (2012) MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. Cardiovasc Res 93:655–665

    Article  PubMed  Google Scholar 

  71. Chiang HR, Schoenfeld L, Ruby JG et al (2010) Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    Article  PubMed  CAS  Google Scholar 

  72. Humphreys DT, Hynes CJ, Patel HR et al (2012) Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function. PLoS One 7:e30933

    Article  PubMed  CAS  Google Scholar 

  73. McManus DD, Ambros V (2011) Circulating MicroRNAs in cardiovascular disease. Circulation 124:1908–1910

    Article  PubMed  Google Scholar 

  74. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  PubMed  CAS  Google Scholar 

  75. Seto AG, van Rooij E (2012) Circulating microRNAs to identify human heart failure. Eur J Heart Fail 13:118–119

    Article  Google Scholar 

  76. Montgomery RL, Hullinger T, Semus HM et al (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124:1537–1547

    Article  PubMed  CAS  Google Scholar 

  77. Hullinger TG, Montgomery R, Seto AG et al (2011) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110:71–78

    Article  PubMed  Google Scholar 

  78. Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Xuefei Wang for careful reading of this manuscript. Work in Dr. Wang’s laboratory was supported by the March of Dimes Foundation and the National Institutes of Health. D. Z. Wang is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Zhi Wang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ding, J., Wang, DZ. (2013). Role of MicroRNAs in Cardiac Hypertrophy and Postinfarction Remodeling. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_17

Download citation

Publish with us

Policies and ethics