Skip to main content

Role of Chymase in Matrix and Myocardial Remodeling Due to Mitral Regurgitation: Implications for Therapy

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1903 Accesses

Abstract

The pure volume overload of mitral regurgitation (MR) has many unique features including matrix metalloproteinase (MMP) activation, increased bradykinin, extracellular matrix loss, disruption of the focal adhesion complex, and cardiomyocyte myofibrillar loss—all of which either directly or indirectly are beneficially affected by inhibition of chymase. Cardiomyocyte myofibrillar loss and cytoskeletal disruption may be related to intracellular oxidative stress and/or increased chymase production within the cardiomyocyte. Increased adrenergic drive is also an important underlying pathophysiologic feature, which, like chymase activation, is present both early and late in course of MR. There is now both dog and human data ­demonstrating the benefit of β1-receptor blockade in isolated MR. However, neither ­chymase inhibition nor β1-receptor blockade alone attenuates left ventricular (LV) dilatation. These data raise the intriguing question whether the combination of a chymase inhibitor and β1-receptor blocker would have a synergistic effect in preventing LV remodeling, especially if started early in the course of isolated MR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borer JS, Bonow RO (2003) Contemporary approach to aortic and mitral regurgitation. Circulation 108:2432–2438

    Article  PubMed  Google Scholar 

  2. Bonow RO, Carabello BA, Chatterjee K et al (2006) ACC/AHA/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 3:e1–e148

    Article  Google Scholar 

  3. Dell’Italia LJ, Balcells E, Meng QC et al (1997) Volume overload cardiac hypertrophy is unaffected by ACE inhibitor treatment in the dog. Am J Physiol Heart Circ Physiol 273:H961–H970

    Google Scholar 

  4. Perry GJ, Wei CC, Hankes GH et al (2002) Angiotensin II receptor blockade does not improve left ventricular function and remodeling in subacute mitral regurgitation in the dog. JACC 39:1374–1379

    Article  PubMed  CAS  Google Scholar 

  5. Ryan TD, Rothstein E, Aban I et al (2007) Left ventricular eccentric remodeling is mediated by bradykinin and precedes myocyte elongation in rats with volume overload. J Am Coll Cardiol 49:811–821

    Article  PubMed  CAS  Google Scholar 

  6. Wei CC, Chen Y-W, Shi K et al (2012) Cardiac kallikrein kinin system is upregulated in chronic volume overload and mediates inflammatory induced collagen loss. PLoS One 7:e40110–e40113

    Article  PubMed  CAS  Google Scholar 

  7. Zheng J, Chen Y, Pat B et al (2009) Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation 119:2086–2095

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y-W, Pat B, Zheng J et al (2010) Tumor necrosis factor-α produced in cardiomyocytes mediates a predominant myocardial inflammatory response to stretch in early volume overload. J Mol Cell Cardiol 49:70–78

    Article  PubMed  CAS  Google Scholar 

  9. Chen Y, Pat B, Gladden JD, Zheng J et al (2011) Dynamic molecular and histopathological changes in inflammation and extracellular matrix turnover in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol 300:H2251–H2260

    Article  PubMed  CAS  Google Scholar 

  10. Urabe Y, Mann DL, Kent RL et al (1992) Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res 70:131–147

    Article  PubMed  CAS  Google Scholar 

  11. Schiros CG, Dell’Italia LJ, Gladden JD et al (2012) Magnetic resonance imaging with three-dimensional analysis reveals important left ventricular remodeling in isolated mitral regurgitation: implications beyond dimensions. Circulation 125:2334–2342

    Article  PubMed  Google Scholar 

  12. Sabri A, Rafiq K, Kolpakov MA et al (2008) Impaired focal adhesion signaling in the course of volume overload due to mitral regurgitation in the dog. Effect of Beta-1 Adrenergic Receptor Blockade. Circ Res 102:1127–1136

    Article  PubMed  CAS  Google Scholar 

  13. Samuel JL, Barrieux A, Dufour S et al (1991) Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 88:1737–1746

    Article  PubMed  CAS  Google Scholar 

  14. Peng X, Kraus MS, Wei H et al (2006) Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 116:217–227

    Article  PubMed  CAS  Google Scholar 

  15. Ulasova E, Gladden JD, Zheng J et al (2010) Extracellular matrix loss in acute volume overload causes structural alterations and dysfunction in cardiomyocyte subsarcolemmal mitochondria. J Mol Cell Cardiol 50:147–156

    Article  PubMed  Google Scholar 

  16. Nagatsu M, Zile MR, Tsutsui H et al (1994) Native β-adrenergic support for left ventricular dysfunction in experimental mitral regurgitation normalizes indexes of pump and contractile function. Circulation 89:818–826

    Article  PubMed  CAS  Google Scholar 

  17. Hankes GH, Ardell JL, Tallaj J et al (2006) Beta1-adrenoceptor blockade mitigates excessive norepinephrine release into cardiac interstitium in mitral regurgitation in dog. Am J Physiol Heart Circ Physiol 291:H147–H151

    Article  PubMed  CAS  Google Scholar 

  18. Mehta RH, Supiano MA, Oral H et al (2003) Compared with control subjects, the systemic sympathetic nervous system is activated in patients with mitral regurgitation. Am Heart J 145:1078–1085

    Article  PubMed  Google Scholar 

  19. Mann DL, Kent RL, Parsons B, Cooper G (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804

    Article  PubMed  CAS  Google Scholar 

  20. Pat B, Killingsworth C, Denney T et al (2008) Dissociation between cardiomyocyte function and remodeling with β-adrenergic receptor blockade in isolated canine mitral regurgitation. Am J Physiol Heart Circ Physiol 295:H2321–H2327

    Article  PubMed  CAS  Google Scholar 

  21. Tsutsui H, Spinale FG, Nagatsu M et al (1994) Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest 93:2639–2648

    Article  PubMed  CAS  Google Scholar 

  22. Ahmed MI, Aban I, Lloyd SG et al (2012) A randomized controlled trial of Beta-1 receptor blockade in isolated degenerative mitral regurgitation. J Am Coll Cardiol 60(9):833–838

    Article  PubMed  CAS  Google Scholar 

  23. Kolpakov MA, Seqqat R, Rafiq K et al (2009) Pleiotropic effects of neutrophils on myocyte apoptosis and left ventricular remodeling during early volume overload. J Mol Cell Cardiol 47:634–645

    Article  PubMed  CAS  Google Scholar 

  24. Pat B, Killingsworth C, Denney T et al (2010) Mast cell stabilizer worsens left ventricular function and cardiomyocyte function and calcium homeostasis in dogs with isolated mitral regurgitation. J Card Fail 16:769–777

    Article  PubMed  Google Scholar 

  25. Spinale FG, Coker ML, Krombach SR et al (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85:364–376

    Article  PubMed  CAS  Google Scholar 

  26. Stewart JA, Wei C-C, Brower GL et al (2003) Cardiac mast cell and chymase mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J Mol Cell Cardiol 35:311–319

    Article  PubMed  CAS  Google Scholar 

  27. Dell’Italia LJ, Meng QC, Balcells E et al (1995) Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol Heart Circ Physiol 269:H2065–H2071

    Google Scholar 

  28. Urata H, Kinoshita A, Misono KS et al (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357

    PubMed  CAS  Google Scholar 

  29. Urata H, Healy B, Stewart RW et al (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883–890

    Article  PubMed  CAS  Google Scholar 

  30. Chandrasekharan UM, Sanker S, Glynias MJ et al (1996) Angiotensin II-forming activity in a reconstructed ancestral chymase. Science 271:502–505

    Article  PubMed  CAS  Google Scholar 

  31. Kakizoe E, Shiota N, Tanabe Y et al (2001) Isoform-selective upregulation of mast cell chymase in the development of skin fibrosis in scleroderma model mice. J Invest Dermatol 16:118–123

    Article  Google Scholar 

  32. Li M, Liu K, Michalicek J, Angus JA et al (2004) Involvement of chymase-mediated angiotensin II generation in blood pressure regulation. J Clin Invest 114:112–120

    PubMed  CAS  Google Scholar 

  33. Wei CC, Hase N, Inoue Y et al (2010) Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest 120:1229–1239

    Article  PubMed  CAS  Google Scholar 

  34. Fang KC, Raymond WW, Blount JL, Caughey GH (1997) Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J Biol Chem 272:25628–25635

    Article  PubMed  CAS  Google Scholar 

  35. Tchougounova E, Lundequist A, Fajardo I et al (2005) A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 280:9291–9296

    Article  PubMed  CAS  Google Scholar 

  36. Okumura K, Takai S, Muramatsu M et al (2004) Human chymase degrades human fibronectin. Clin Chim Acta 347:223–2235

    Article  PubMed  CAS  Google Scholar 

  37. Forteza R, Lauredo I, Abraham WM, Conner GE (1999) Bronchial tissue kallikrein activity is regulated by hyaluronic acid binding. Am J Respir Cell Mol Biol 21:666–674

    PubMed  CAS  Google Scholar 

  38. Leskinen MJ, Lindstedt KA, Wang Y, Kovanen PT (2003) Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arterioscler Thromb Vasc Biol 23:238–243

    Article  PubMed  CAS  Google Scholar 

  39. Hara M, Ono K, Hwang MW, Iwasaki A et al (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195:375–381

    Article  PubMed  CAS  Google Scholar 

  40. Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    Article  PubMed  CAS  Google Scholar 

  41. Nagata S, Kato J, Sasaki K et al (2006) Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun 350:1026–1031

    Article  PubMed  CAS  Google Scholar 

  42. Jessup JA, Trask AJ, Chappell MC, Nagata S, Kato J, Kitamura K, Ferrario CM (2008) Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol 294:H2614–H2618

    Article  PubMed  CAS  Google Scholar 

  43. Trask AJ, Jessup JA, Chappell MC, Ferrario CM (2008) Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart. Am J Physiol Heart Circ Physiol 294:H2242–H2247

    Article  PubMed  CAS  Google Scholar 

  44. Ferrario C, Varagic J, Hanini J et al (2009) Differential regulation of angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol 296:H1184–H1192

    Article  PubMed  CAS  Google Scholar 

  45. Prosser HC, Forster ME, Richards AM, Pemberton CJ (2009) Cardiac chymase converts rat proAngiotensin-12 (PA12) to angiotensin II: effects of PA12 upon cardiac haemodynamics. Cardiovasc Res 82:40–50

    Article  PubMed  CAS  Google Scholar 

  46. Ahmad S, Simmons T, Varagic J et al (2011) Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue (2011). PLoS One 6:e28501

    Article  PubMed  CAS  Google Scholar 

  47. Dell’Italia LJ, Meng QC, Balcells E et al (1997) Compartmentalization of angiotensin II ­generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces. J Clin Invest 100:253–258

    Article  PubMed  Google Scholar 

  48. Hoshino F, Urata H, Inoue Y et al (2003) Chymase inhibitor improves survival in hamsters with myocardial infarction. J Cardiovasc Pharmacol 41(Suppl 1):S11–S18

    PubMed  CAS  Google Scholar 

  49. Ihara M, Urata H, Shirai K et al (2003) High cardiac angiotensin-II-forming activity in infarcted and non-infarcted human myocardium. Cardiology 94:247–253

    Article  Google Scholar 

  50. Ihara M, Urata H, Kinoshita A et al (1999) Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Hypertension 33:1399–1405

    Article  PubMed  CAS  Google Scholar 

  51. Arakawa K, Urata H (2000) Hypothesis regarding the pathophysiological role of alternative pathways of angiotensin II formation in atherosclerosis. Hypertension 36:638–641

    Article  PubMed  CAS  Google Scholar 

  52. Uehara Y, Urata H, Sasaguri M et al (2000) Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension 35:55–60

    Article  PubMed  CAS  Google Scholar 

  53. Uehara Y, Urata H, Ideishi M et al (2002) Chymase inhibition suppresses high-cholesterol diet-induced lipid accumulation in the hamster aorta. Cardiovasc Res 55:870–876

    Article  PubMed  CAS  Google Scholar 

  54. Swedenborg J, Mäyränpää MI, Kovanen PT (2011) Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 31:734–740

    Article  PubMed  CAS  Google Scholar 

  55. Rafiq K, Sherajee SJ, Fan YY et al (2011) Blood glucose level and survival in streptozotocin-treated human chymase transgenic mice. Chin J Physiol 54:30–35

    Article  PubMed  CAS  Google Scholar 

  56. Singh VP, Le B, Bhat VB et al (2007) High glucose induced regulation of intracellular angiotensin II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol 293:H939–H948

    Article  PubMed  CAS  Google Scholar 

  57. Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294:H1675–H1684

    Article  PubMed  CAS  Google Scholar 

  58. Lavrentyev EN, Estes AM, Malik KU et al (2007) Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells. Circ Res 101:455–464

    Article  PubMed  CAS  Google Scholar 

  59. Koka V, Wang W, Huang XR et al (2006) Advanced glycation end products activate a chymase-dependent angiotensin II-generating pathway in diabetic complications. Circulation 113:1353–1360

    Article  PubMed  CAS  Google Scholar 

  60. Tsai CT, Lai LP, Hwang JJ et al (2008) Renin-angiotensin system component expression in the HL-1 atrial cell line and in a pig model of atrial fibrillation. J Hypertens 26:570–582

    Article  PubMed  CAS  Google Scholar 

  61. Matsumoto T, Wada A, Tsutamoto T et al (2003) Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation 107:2555–2558

    Article  PubMed  Google Scholar 

  62. Jin D, Takai S, Sakaguchi M et al (2004) An antiarrhythmic effect of a chymase inhibitor after myocardial infarction. J Pharmacol Exp Ther 309:490–497

    Article  PubMed  CAS  Google Scholar 

  63. Jin D, Takai S, Yamada M et al (2003) Impact of chymase inhibitor on cardiac function and survival after myocardial infarction. Cardiovasc Res 60:413–420

    Article  PubMed  CAS  Google Scholar 

  64. Matsumoto C, Hayashi T, Kitada K et al (2009) Chymase plays an important role in left ventricular remodeling influenced by intermittent hypoxia in mice. Hypertension 54:164–171

    Article  PubMed  CAS  Google Scholar 

  65. Oyamada S, Bianchi C, Takai S et al (2011) Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther 339:143–151

    Article  PubMed  CAS  Google Scholar 

  66. Pat B, Chen Y, Killingsworth C et al (2011) Chymase inhibition prevents fibronectin and myofibrillar loss and improves cardiomyocyte function and LV torsion angle in dogs with isolated mitral regurgitation. Circulation 122:1488–1495

    Article  Google Scholar 

  67. Fukuda N, Granzier HL, Ishiwata S, Kurihara S (2008) Physiological functions of the giant elastic protein titin in mammalian striated muscle. J Physiol Sci 58:151–159

    Article  PubMed  CAS  Google Scholar 

  68. Bell SP, Nyland L, Tischler MD et al (2000) Alterations in the determinants of diastolic suction during pacing tachycardia. Circ Res 87:235–240

    Article  PubMed  CAS  Google Scholar 

  69. Warren CM, Joradan MC, Roos KP et al (2003) Titin isoform expression in normal and ­hypertensive myocardium. Cardiovasc Res 59:86–94

    Article  PubMed  CAS  Google Scholar 

  70. Williams L, Howell N, Pagano D, Andreka P, Vertesaljai M, Pecor T, Frenneaux M, Granzier H (2009) Titin isoform expression in aortic stenosis. Clin Sci (Lond) 117:237–242

    Article  CAS  Google Scholar 

  71. Kruger M, Linkwa (2009) Titin-based mechanical signaling in normal and failing myocardium. J Mol Cell Cardiol 46:490–498

    Article  CAS  Google Scholar 

  72. Russel IK, Gotte MJW, Bronzwaer JG et al (2009) Left ventricular torsion. JACC Cardiovasc Imaging 2:648–655

    Article  PubMed  Google Scholar 

  73. Dong S-J, Hees PS, Huang W-M et al (1999) Independent effects of preload, afterload and contractility on left ventricular torsion. Am J Physiol Heart Circ Physiol 277:H1053–H1060

    CAS  Google Scholar 

  74. Kim NN, Villegas S, Summerour SR, Villarreal FJ (1999) Regulation of cardiac fibroblast extracellular matrix production by bradykinin and nitric oxide. J Mol Cell Cardiol 31:457–466

    Article  PubMed  CAS  Google Scholar 

  75. Pawluczyk IZ, Tan EK, Lodwick D, Harris KP (2008) Kallikrein gene ‘knock-down’ by small interfering RNA transfection induces a profibrotic phenotype in rat mesangial cells. J Hypertens 26:93–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Office of Research and Development, Medical Service, Department of Veteran Affairs (LJD), and Specialized Centers of Clinically Orientated Research grant in Cardiac Dysfunction P50HL077100 and in part by Teijin Pharmaceuticals Ltd, Tokyo, Japan (LJD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Dell’Italia M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melby, S.J., Ferrario, C.M., Wei, CC., Dell’Italia, L.J. (2013). Role of Chymase in Matrix and Myocardial Remodeling Due to Mitral Regurgitation: Implications for Therapy. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_12

Download citation

Publish with us

Policies and ethics