Skip to main content

Modulating G Protein-Coupled Receptors to Effect Reverse Cardiac Remodeling

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1944 Accesses

Abstract

G protein-coupled receptors (GPCRs) represent the largest known family of transmembrane receptors and therapeutic targets in cardiovascular medicine, accounting for a large number of marketed cardiovascular pharmaceuticals. Traditionally, GPCR stimulation promotes G protein signaling and, to limit unrestrained stimulation, activation of G protein-coupled receptor kinases (GRKs), leading to agonist-dependent receptor phosphorylation. In turn, GPCR phosphorylation promotes β-arrestin binding to the receptors, which sterically prevents further G protein signaling and scaffold receptors to the internalization machinery. However, novel aspects of GPCR signaling have been recently appreciated, including G protein modulators, G protein-independent pathways, and GRK adrenal modulation of adrenergic drive. Since all currently used drugs have been developed using assays only testing G protein-dependent effects, the discovery of such novel signal transduction pathways might represent an important opportunity to identify additional therapeutic approaches to reverse or prevent cardiac remodeling and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vassilatis DK, Hohmann JG, Zeng H et al (2003) The g protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA 100:4903–4908

    Article  PubMed  CAS  Google Scholar 

  2. Hakak Y, Shrestha D, Goegel MC, Behan DP, Chalmers DT (2003) Global analysis of g-protein-coupled receptor signaling in human tissues. FEBS Lett 550:11–17

    Article  PubMed  CAS  Google Scholar 

  3. Tang CM, Insel PA (2004) Gpcr expression in the heart; “new” receptors in myocytes and fibroblasts. Trends Cardiovasc Med 14:94–99

    Article  PubMed  CAS  Google Scholar 

  4. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  PubMed  CAS  Google Scholar 

  5. Port JD, Bristow MR (2001) Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol 33:887–905

    Article  PubMed  CAS  Google Scholar 

  6. Cohn JN, Tognoni G (2001) Valsartan Heart Failure Trial I. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675

    Article  PubMed  CAS  Google Scholar 

  7. Kober L, Torp Pedersen C, Carlsen JE et al (1995) A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril cardiac evaluation (trace) study group. N Engl J Med 333:1670–1676

    Article  PubMed  CAS  Google Scholar 

  8. Lindholm LH, Ibsen H, Dahlof B et al (2002) Cardiovascular morbidity and mortality in patients with diabetes in the losartan intervention for endpoint reduction in hypertension study (life): A randomised trial against atenolol. Lancet 359:1004–1010

    Article  PubMed  CAS  Google Scholar 

  9. Pfeffer MA, Braunwald E, Moye LA et al (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The save investigators. N Engl J Med 327:669–677

    Article  PubMed  CAS  Google Scholar 

  10. Pitt B, Poole-Wilson PA, Segal R et al (2000) Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: Randomised trial–the losartan heart failure survival study elite ii. Lancet 355:1582–1587

    Article  PubMed  CAS  Google Scholar 

  11. Packer M, Bristow MR, Cohn JN et al (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol heart failure study group. N Engl J Med 334:1349–1355

    Article  PubMed  CAS  Google Scholar 

  12. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    Article  PubMed  CAS  Google Scholar 

  13. Belmonte SL, Blaxall BC (2011) G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circ Res 109:309–319

    Article  PubMed  CAS  Google Scholar 

  14. Kim J, Ahn S, Ren XR et al (2005) Functional antagonism of different g protein-coupled receptor kinases for beta-arrestin-mediated angiotensin ii receptor signaling. Proc Natl Acad Sci USA 102:1442–1447

    Article  PubMed  CAS  Google Scholar 

  15. Noor N, Patel CB, Rockman HA (2011) Beta-arrestin: A signaling molecule and potential therapeutic target for heart failure. J Mol Cell Cardiol 51:534–541

    Article  PubMed  CAS  Google Scholar 

  16. Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of g-protein-coupled receptor signals. J Cell Sci 115:455–465

    PubMed  CAS  Google Scholar 

  17. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for g protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210

    Article  PubMed  CAS  Google Scholar 

  18. Tan CM, Brady AE, Nickols HH, Wang Q, Limbird LE (2004) Membrane trafficking of g protein-coupled receptors. Annu Rev Pharmacol Toxicol 44:559–609

    Article  PubMed  CAS  Google Scholar 

  19. Gregory KN, Hahn H, Haghighi K et al (2004) Increased particulate partitioning of pkc epsilon reverses susceptibility of phospholamban knockout hearts to ischemic injury. J Mol Cell Cardiol 36:313–318

    Article  PubMed  CAS  Google Scholar 

  20. Perrino C, Rockman HA (2007) Reversal of cardiac remodeling by modulation of adrenergic receptors: A new frontier in heart failure. Curr Opin Cardiol 22:443–449

    Article  PubMed  Google Scholar 

  21. Perrino C, Naga Prasad SV, Schroder JN et al (2005) Restoration of beta-adrenergic receptor signaling and contractile function in heart failure by disruption of the betaark1/phosphoinositide 3-kinase complex. Circulation 111:2579–2587

    Article  PubMed  CAS  Google Scholar 

  22. Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ (1997) The role of sequestration in g protein-coupled receptor resensitization. Regulation of beta2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem 272:5–8

    Article  PubMed  CAS  Google Scholar 

  23. Vasudevan NT, Mohan ML, Gupta MK, Hussain AK, Naga Prasad SV (2011) Inhibition of protein phosphatase 2a activity by pi3kgamma regulates beta-adrenergic receptor function. Mol Cell 41:636–648

    Article  PubMed  CAS  Google Scholar 

  24. Naga Prasad SV, Laporte SA, Chamberlain D et al (2002) Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by ap-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 158:563–575

    Article  PubMed  Google Scholar 

  25. Naga Prasad SV, Barak LS, Rapacciuolo A, Caron MG, Rockman HA (2001) Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by beta-adrenergic receptor kinase 1. A role in receptor sequestration. J Biol Chem 276:18953–18959

    Article  PubMed  CAS  Google Scholar 

  26. Naga Prasad SV, Perrino C, Rockman HA (2003) Role of phosphoinositide 3-kinase in cardiac function and heart failure. Trends Cardiovasc Med 13:206–212

    Article  PubMed  Google Scholar 

  27. Perrino C, Naga Prasad SV, Patel M, Wolf MJ, Rockman HA (2005) Targeted inhibition of beta-adrenergic receptor kinase-1-associated phosphoinositide-3 kinase activity preserves beta-adrenergic receptor signaling and prolongs survival in heart failure induced by calsequestrin overexpression. J Am Coll Cardiol 45:1862–1870

    Article  PubMed  CAS  Google Scholar 

  28. Nienaber JJ, Tachibana H, Naga Prasad SV et al (2003) Inhibition of receptor-localized pi3k preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. J Clin Invest 112:1067–1079

    PubMed  CAS  Google Scholar 

  29. Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA (2005) Protein kinase activity of phosphoinositide 3-kinase regulates beta-adrenergic receptor endocytosis. Nat Cell Biol 7:785–796

    Article  PubMed  Google Scholar 

  30. Perino A, Ghigo A, Ferrero E et al (2011) Integrating cardiac pip3 and camp signaling through a pka anchoring function of p110gamma. Mol Cell 42:84–95

    Article  PubMed  CAS  Google Scholar 

  31. Patrucco E, Notte A, Barberis L et al (2004) Pi3kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118:375–387

    Article  PubMed  CAS  Google Scholar 

  32. Luttrell LM, Ferguson SS, Daaka Y et al (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-src protein kinase complexes. Science 283:655–661

    Article  PubMed  CAS  Google Scholar 

  33. Luttrell LM, Roudabush FL, Choy EW et al (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–2454

    Article  PubMed  CAS  Google Scholar 

  34. Wei H, Ahn S, Shenoy SK et al (2003) Independent beta-arrestin 2 and g protein-mediated pathways for angiotensin ii activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 100:10782–10787

    Article  PubMed  CAS  Google Scholar 

  35. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and g protein-mediated erk activation by the angiotensin ii receptor. J Biol Chem 279:35518–35525

    Article  PubMed  CAS  Google Scholar 

  36. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  PubMed  CAS  Google Scholar 

  37. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the egf receptor in signalling by g-protein-coupled receptors. Nature 379:557–560

    Article  PubMed  CAS  Google Scholar 

  38. Maudsley S, Pierce KL, Zamah AM et al (2000) The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 275:9572–9580

    Article  PubMed  CAS  Google Scholar 

  39. Noma T, Lemaire A, Naga Prasad SV et al (2007) Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the egfr confers cardioprotection. J Clin Invest 117:2445–2458

    Article  PubMed  CAS  Google Scholar 

  40. Tilley DG, Kim IM, Patel PA, Violin JD, Rockman HA (2009) Beta-arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling. J Biol Chem 284:20375–20386

    Article  PubMed  CAS  Google Scholar 

  41. Prenzel N, Zwick E, Daub H et al (1999) Egf receptor transactivation by g-protein-coupled receptors requires metalloproteinase cleavage of prohb-egf. Nature 402:884–888

    PubMed  CAS  Google Scholar 

  42. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  PubMed  CAS  Google Scholar 

  43. Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ (2009) {beta}-arrestin-2 mediates anti-apoptotic signaling through regulation of bad phosphorylation. J Biol Chem 284:8855–8865

    Article  PubMed  CAS  Google Scholar 

  44. Violin JD, Ren XR, Lefkowitz RJ (2006) G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer. J Biol Chem 281:20577–20588

    Article  PubMed  CAS  Google Scholar 

  45. Kim IM, Tilley DG, Chen J et al (2008) Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated egfr transactivation. Proc Natl Acad Sci USA 105:14555–14560

    Article  PubMed  CAS  Google Scholar 

  46. Shenoy SK, Drake MT, Nelson CD et al (2006) Beta-arrestin-dependent, g protein-independent erk1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281:1261–1273

    Article  PubMed  CAS  Google Scholar 

  47. Bouvier M (2001) Oligomerization of g-protein-coupled transmitter receptors. Nat Rev Neurosci 2:274–286

    Article  PubMed  CAS  Google Scholar 

  48. Breitwieser GE (2004) G protein-coupled receptor oligomerization: Implications for g protein activation and cell signaling. Circ Res 94:17–27

    Article  PubMed  CAS  Google Scholar 

  49. George SR, O’Dowd BF, Lee SP (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 1:808–820

    Article  PubMed  CAS  Google Scholar 

  50. Overton MC, Blumer KJ (2002) The extracellular n-terminal domain and transmembrane domains 1 and 2 mediate oligomerization of a yeast g protein-coupled receptor. J Biol Chem 277:41463–41472

    Article  PubMed  CAS  Google Scholar 

  51. Tarasova NI, Rice WG, Michejda CJ (1999) Inhibition of g-protein-coupled receptor function by disruption of transmembrane domain interactions. J Biol Chem 274:34911–34915

    Article  PubMed  CAS  Google Scholar 

  52. Calver AR, Robbins MJ, Cosio C et al (2001) The c-terminal domains of the gaba(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J Neurosci 21:1203–1210

    PubMed  CAS  Google Scholar 

  53. Angers S, Salahpour A, Joly E et al (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (bret). Proc Natl Acad Sci USA 97:3684–3689

    PubMed  CAS  Google Scholar 

  54. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931

    Article  PubMed  CAS  Google Scholar 

  55. Hebert TE, Moffett S, Morello JP et al (1996) A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392

    Article  PubMed  CAS  Google Scholar 

  56. Lavoie C, Mercier JF, Salahpour A et al (2002) Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and erk signaling efficacy. J Biol Chem 277:35402–35410

    Article  PubMed  CAS  Google Scholar 

  57. Xu J, He J, Castleberry AM et al (2003) Heterodimerization of alpha 2a- and beta 1-adrenergic receptors. J Biol Chem 278:10770–10777

    Article  PubMed  CAS  Google Scholar 

  58. Barki-Harrington L, Luttrell LM, Rockman HA (2003) Dual inhibition of beta-adrenergic and angiotensin ii receptors by a single antagonist: A functional role for receptor-receptor interaction in vivo. Circulation 108:1611–1618

    Article  PubMed  CAS  Google Scholar 

  59. Chung S, Funakoshi T, Civelli O (2008) Orphan gpcr research. Br J Pharmacol 153(Suppl 1):S339–S346

    PubMed  CAS  Google Scholar 

  60. Sakurai T (2005) Reverse pharmacology of orexin: From an orphan gpcr to integrative physiology. Regul Pept 126:3–10

    Article  PubMed  CAS  Google Scholar 

  61. Civelli O, Saito Y, Wang Z, Nothacker HP, Reinscheid RK (2006) Orphan gpcrs and their ligands. Pharmacol Ther 110:525–532

    Article  PubMed  CAS  Google Scholar 

  62. Adams JW, Wang J, Davis JR et al (2008) Myocardial expression, signaling, and function of gpr22: A protective role for an orphan g protein-coupled receptor. Am J Physiol Heart Circ Physiol 295:H509–H521

    Article  PubMed  CAS  Google Scholar 

  63. Salazar NC, Chen J, Rockman HA (2007) Cardiac gpcrs: Gpcr signaling in healthy and failing hearts. Biochim Biophys Acta 1768:1006–1018

    Article  PubMed  CAS  Google Scholar 

  64. Kamal FA, Smrcka AV, Blaxall BC (2011) Taking the heart failure battle inside the cell: Small molecule targeting of gbetagamma subunits. J Mol Cell Cardiol 51:462–467

    Article  PubMed  CAS  Google Scholar 

  65. Ross EM, Wilkie TM (2000) Gtpase-activating proteins for heterotrimeric g proteins: Regulators of g protein signaling (rgs) and rgs-like proteins. Annu Rev Biochem 69:795–827

    Article  PubMed  CAS  Google Scholar 

  66. Berman DM, Wilkie TM, Gilman AG (1996) Gaip and rgs4 are gtpase-activating proteins for the gi subfamily of g protein alpha subunits. Cell 86:445–452

    Article  PubMed  CAS  Google Scholar 

  67. Zhang P, Mende U (2011) Regulators of g-protein signaling in the heart and their potential as therapeutic targets. Circ Res 109:320–333

    Article  PubMed  CAS  Google Scholar 

  68. Huang X, Fu Y, Charbeneau RA et al (2006) Pleiotropic phenotype of a genomic knock-in of an rgs-insensitive g184s gnai2 allele. Mol Cell Biol 26:6870–6879

    Article  PubMed  CAS  Google Scholar 

  69. Rogers JH, Tamirisa P, Kovacs A et al (1999) Rgs4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest 104:567–576

    Article  PubMed  CAS  Google Scholar 

  70. Rogers JH, Tsirka A, Kovacs A et al (2001) Rgs4 reduces contractile dysfunction and hypertrophic gene induction in galpha q overexpressing mice. J Mol Cell Cardiol 33:209–218

    Article  PubMed  CAS  Google Scholar 

  71. Takimoto E, Koitabashi N, Hsu S et al (2009) Regulator of g protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of pde5 inhibition in mice. J Clin Invest 119:408–420

    PubMed  CAS  Google Scholar 

  72. Li H, He C, Feng J et al (2010) Regulator of g protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Proc Natl Acad Sci USA 107:13818–13823

    Article  PubMed  CAS  Google Scholar 

  73. Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928

    Article  PubMed  CAS  Google Scholar 

  74. Lymperopoulos A, Rengo G, Funakoshi H, Eckhart AD, Koch WJ (2007) Adrenal grk2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 13:315–323

    Article  PubMed  CAS  Google Scholar 

  75. Lymperopoulos A, Rengo G, Gao E et al (2010) Reduction of sympathetic activity via adrenal-targeted grk2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 285:16378–16386

    Article  PubMed  CAS  Google Scholar 

  76. Liggett SB, Mialet-Perez J, Thaneemit-Chen S et al (2006) A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA 103:11288–11293

    Article  PubMed  CAS  Google Scholar 

  77. Bristow MR, Krause-Steinrauf H, Nuzzo R et al (2004) Effect of baseline or changes in adrenergic activity on clinical outcomes in the beta-blocker evaluation of survival trial. Circulation 110:1437–1442

    Article  PubMed  CAS  Google Scholar 

  78. Perrino C, Esposito G, Rockman HA (2005) Defects in cardiomyocyte function: Role of beta-adrenergic receptor dysfunction. Panminerva Med 47:143–155

    PubMed  CAS  Google Scholar 

  79. Perrino C, Naga Prasad SV, Mao L (2006) Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest 116:1547–1560

    Article  PubMed  CAS  Google Scholar 

  80. Carnevale D, Vecchione C, Mascio G et al (2012) Pi3kgamma inhibition reduces blood pressure by a vasorelaxant akt/l-type calcium channel mechanism. Cardiovasc Res 93:200–209

    Article  PubMed  CAS  Google Scholar 

  81. Rakesh K, Yoo B, Kim IM et al (2010) Beta-arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal 3:ra46

    Article  PubMed  Google Scholar 

  82. Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Perrino M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perrino, C., Rockman, H.A. (2013). Modulating G Protein-Coupled Receptors to Effect Reverse Cardiac Remodeling. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_10

Download citation

Publish with us

Policies and ethics