Dilation Vector Field on Wiener Space

  • Hélène AiraultEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 34)


We consider the heat operator Δ H , heat equation, and heat kernel measures (ν t ) t≥0 on Wiener space Ω as explained in Driver (Contemp. Math. 338:101–141, 2003). We define the notion of heat dilation vector field associated to a family of probability measures (μ t ) t≥0 on Ω. Let ω ∈Ω. The vector field V on Ω is expressed for F(ω)=f(ω(t 1),ω(t 2),,ω(t n )) as VF(ω)=(vf)(ω(t 1), ω(t 2), ,ω(t n )) where \(vf =\sum _{ k=1}^{n}x_{k} \frac{\partial } {\partial x_{k}}\). The vector field V is shown to be a heat vector field for the heat kernel measures (ν t ) t≥0. We project down “through a nondegenerate map Z”, Ornstein–Uhlenbeck operators defined on Ω by \(\mathcal{L}_{t}F = t\Delta _{H}F - V F\). We obtain a first-order partial differential equation for the density of the random vector Z. We compare this differential equation to the heat equation and to Stein’s equation for the density.


Wiener space Heat kernel measures Dilation vector fields Ornstein–Uhlenbeck operators Malliavin calculus 



A preliminary version of this note was presented in June 2011 at the “Journée mathématique d’Amiens”. I thank Frederi Viens for friendly and useful discussions in July 2011. I also thank the referee for significant suggestions for the writing.


  1. 1.
    Airault, H., Malliavin, P., Viens, F.: Stokes formula on the Wiener space and n-dimensional Nourdin-Peccati analysis. J. Funct. Anal. 258(5), 1763–1783 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Airault, H., Malliavin, P.: Integration by parts formulas and dilatation vector fields on elliptic probability spaces. Probab. Theor. Rel. Fields. 106(4), 447–494 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cameron, R.H., Martin, W.T.: Transformations of Wiener integrals under translations. Ann. Math. 45(2), 386–396 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Driver, B.K.: Heat kernels measures and infinite dimensional analysis. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002). Contemp. Math. 338, 101–141 (2003) (American Mathematical Society, Providence)Google Scholar
  5. 5.
    Malliavin, P.: Analyse différentielle sur l’espace de Wiener. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Warsaw, 1983), pp. 1089–1096. Warsaw (1984)Google Scholar
  6. 6.
    Malliavin, P.: Stochastic analysis. Grundlehren der Mathematischen Wissenschaften, vol. 313. Springer, Berlin (1997)Google Scholar
  7. 7.
    Malliavin, P.: Calcul des variations, intégrales stochastiques et complexes de De Rham sur l’espace de Wiener. C.R. Acad. Sci. Paris Série I, 299(8), 347–350 (1984)Google Scholar
  8. 8.
    Malliavin, P.: Calcul des variations stochastiques subordonné au processus de la chaleur. C. R. Acad. Sci. Paris Sér. I Math. 295(2), 167–172 (1982)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Mancino, M.E.: Dilatation vector fields on the loop group. J. Funct. Anal. 166(1), 130–147 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theor. Rel. Fields 145(1–2), 75–118 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Nourdin, I., Viens, F.G.: Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 14(78), 2287–2309 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Nualart, D.: The Malliavin calculus and related topics. In: Probability and its Applications. Springer, Berlin (1995)Google Scholar
  13. 13.
    Wiener, N.: Differential space. J. Math. Phys. 2, 131–174 (1923)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.INSSET, UMR 7132 CNRS, Université de Picardie Jules VerneSaint Quentin (Aisne)France

Personalised recommendations