Skip to main content

Stationarity of the Solution for the Semilinear Stochastic Integral Equation on the Whole Real Line

  • Conference paper
  • First Online:
Book cover Malliavin Calculus and Stochastic Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 34))

  • 2434 Accesses

Abstract

In this article we prove the stationarity of the solution of the H-valued integral equation

$$X(t) =\displaystyle\int _{ -\infty }^{t}U(t - s)f(X(s))\mathrm{d}s + V (t),$$

where H is a real separable Hilbert space. In this equation, U(t) is a semigroup generated by a strictly negative definite, self-adjoint unbounded operator A, such that A  − 1 is compact and f is of monotone type and is bounded by a polynomial and V (t) is a cadlag adapted stationary process.

Received 11/7/2011; Accepted 6/14/2012;Final 7/23/2012

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albeverio, S., Mandrekar, V., Rudiger, B.: Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise. Stoch. Process. Appl. 119, 835–863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Rudiger, B.: Stochastic Integrals and the Lévy-Itô decomposition theorem on separable Banach spaces. Stoch. Anal. Appl. 23(2), 217–253 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Röckner, M.: Stochastic differential equations in infinite dimensions: solutions via dirichlet forms. Probab. Theor. Rel. Fields 89, 347–386 (1991)

    Article  MATH  Google Scholar 

  4. Applebaum, D.: Levy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  5. Alós, E., Nualart, D.: Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75(3), 129–152 (2003)

    MathSciNet  Google Scholar 

  6. Caraballo, T., Garrido-Atienza, M.J., Taniguchi, T.: The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. 74(11), 3671–3684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Ergodicity for infinite-dimensional systems. In: London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  8. Da Prato, G., Zabcyk, J.: Stochastic equations in Infinite dimensions. In: Encyclopedia of Mathematics and its Applications, vol. 45. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  9. Duncan, T.E., Hu, Y., Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion I Theory. SIAM J. Contr. Optim. 38(2), 582–612 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferrante, M., Rovira, C.: Convergence of delay differential equations driven by fractional Brownian motion. J. Evol. Equat. 10(4), 761–783 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Funaki, T.: Random motion of strings and related stochastic evolution equations. Nagoya Math. 89, 129–193 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Hamedani, H.D., Zangeneh, B.Z.: The existence, uniqueness, and measurability of a stopped semilinear integral equation. Stoch. Anal. Appl. 25(3), 493–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iscoe, I., Marcus, M.B., McDonald, D., Talagrand, M., Zinn, J.: Continuity of l 2-valued Ornstein-Uhlenbeck Process. Ann. Probab. 18(1), 68–84 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iwata, K.: An infinite dimensional stochastic differential equation with state space C(R). Probab. Theor. Rel. Fields 5743, 141–159 (1987)

    Article  MathSciNet  Google Scholar 

  15. Jona-Lasinio, P., Mitter, P.K.: On the stochastic quantization of field theory. Commun. Math. Phys. 101, 409–436 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolmogorov, A.: Zur umker barkeit der statistischen naturgesetze. Math. Ann. 113, 766–772 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marcus, R.: Parabolic Ito equations. Trans. Am. Math. Soc. 198, 177–190 (1974)

    MATH  Google Scholar 

  18. Marcus, R.: Parabolic Ito equations with monotone non-linearities. Funct. Anal. 29, 275–286 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marcus, R.: Stochastic diffusion on an unbounded domain. Pacific J. Math. 84(1), 143–153 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miyahara, Y.: Infinite dimensional Langevin equation and Fokker-Planck equation. Nagoya Math. J. 81, 177–223 (1981)

    MathSciNet  MATH  Google Scholar 

  22. Nualart, D., Rascanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53(1), 55–81 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Levy noise. An evolution equation approach. In: Encyclopedia of Mathematics and its Applications, vol. 113. Cambridge University Press, Cambridge, (2007)

    Google Scholar 

  24. Riedle, M., van Gaans, O.: Stochastic integration for Lévy processes with values in Banach spaces. Stoch. Process. Appl. 119 1952–1974 (2009)

    Article  MATH  Google Scholar 

  25. Tindel, S., Tudor, C.A., Viens, F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theor. Rel. Fields 127(2), 186–204 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Walsh, J.B.: An introduction to stochastic partial differential equations. Lect. Notes Math. 1180, 266–439 (1986)

    Google Scholar 

  27. Zamani, S.: Reaction-diffusion equations with polynomial drifts driven by fractional Brownian motions. Stoch. Anal. Appl. 28(6), 1020–1039 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zangeneh, B.Z.: An energy-type inequality. Math. Inequal. Appl. 1(3), 453–461 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Zangeneh, B.Z.: Galerkin approximations for a semilinear stochastic integral equation. Sci. Iran. 4(1–2), 8–11 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Zangeneh, B.Z.: Semilinear stochastic evolution equations with monotone nonlinearities. Stoch. Stoch. Rep. 53, 129–174 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Zangeneh, B.Z.: Existence and uniqueness of the solution of a semilinear stochastic evolution equation on the whole real line. In: Seminar on Stochastic Processes. Birkhãuser, Boston (1992)

    Google Scholar 

  32. Zangeneh, B.Z.: Measurability of the solution of a semilinear evolution equation. In: Seminar on Stochastic Processes. Birkhãuser, Boston (1990)

    Google Scholar 

  33. Zangeneh, B.Z.: Semilinear Stochastic Evolution Equations. Ph.D. thesis, University of British Columbia, Vancouver, B.C. Canada (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Z. Zangeneh .

Editor information

Editors and Affiliations

Additional information

I would like to dedicate this paper to Professor David Nualart for his long lasting contribution to the field of stochastic analysis.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Zangeneh, B.Z. (2013). Stationarity of the Solution for the Semilinear Stochastic Integral Equation on the Whole Real Line. In: Viens, F., Feng, J., Hu, Y., Nualart , E. (eds) Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5906-4_14

Download citation

Publish with us

Policies and ethics