Skip to main content

Gaussian Upper Density Estimates for Spatially Homogeneous SPDEs

  • Conference paper
  • First Online:
Malliavin Calculus and Stochastic Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 34))

  • 2441 Accesses

Abstract

We consider a general class of SPDEs in ℝ d driven by a Gaussian spatially homogeneous noise which is white in time. We provide sufficient conditions on the coefficients and the spectral measure associated to the noise ensuring that the density of the corresponding mild solution admits an upper estimate of Gaussian type. The proof is based on the formula for the density arising from the integration-by-parts formula of the Malliavin calculus. Our result applies to the stochastic heat equation with any space dimension and the stochastic wave equation with d ∈ { 1, 2, 3}. In these particular cases, the condition on the spectral measure turns out to be optimal.

MSC Subject Classifications: 60H07, 60H15

Received 12/10/2011; Accepted 5/28/2012; Final 6/10/2012

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bally, V., Pardoux, E.: Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9(1), 27–64 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carmona, R., Nualart, D.: Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Relat. Fields 79(4), 469–508 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108(518), viii+125 (1994) MR 1185878 (94h:35080)

    Google Scholar 

  4. Conus, D., Dalang, R.C.: The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13(22), 629–670 (2008) MR 2399293 (2009c:60170)

    Google Scholar 

  5. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  6. Dalang, R., Quer-Sardanyons, L.: Stochastic integrals for spde’s: A comparison. Expo. Math. 29, 67–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4(6), 29 pp. (electronic) (1999)

    Google Scholar 

  8. Dalang, R.C., Frangos, N.E.: The stochastic wave equation in two spatial dimensions, Ann. Probab. 26(1), 187–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems for non-linear stochastic heat equations with multiplicative noise, Probab. Theory Relat. Fields 144(3–4), 371–427 (2009) MR 2496438 (2010g:60151)

    Google Scholar 

  10. Dalang, R.C., Mueller, C.: Some non-linear S.P.D.E.’s that are second order in time. Electron. J. Probab. 8(1), 21 pp. (electronic) (2003)

    Google Scholar 

  11. Fournier, N., Printems, J.: Absolute continuity for some one-dimensional processes. Bernoulli 16(2), 343–360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12.  Guérin, H., Méléard, S., Nualart, E.: Estimates for the density of a nonlinear Landau process. J. Funct. Anal. 238(2), 649–677 (2006) MR 2253737 (2008e:60164)

    Google Scholar 

  13. Hu, Y., Nualart, D., Song, J.: A nonlinear stochastic heat equation: Hölder continuity and smoothness of the density of the solution, ArXiv Preprint arXiv:1110.4855v1

    Google Scholar 

  14. Hu, Y., Nualart, D., Song, J.: Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39(1), 291–326 (2011) MR 2778803 (2012b:60208)

    Google Scholar 

  15. Karczewska, A., Zabczyk, J.: Stochastic PDE’s with function-valued solutions, Infinite dimensional stochastic analysis (Amsterdam, 1999), Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., vol. 52, R. Neth. Acad. Arts Sci., Amsterdam, 197–216 (2000) MR 2002h:60132

    Google Scholar 

  16. Kohatsu-Higa, A.: Lower bounds for densities of uniformly elliptic random variables on Wiener space, Probab. Theory Relat. Fields 126(3), 421–457 (2003) MR 1992500 (2004d:60141)

    Google Scholar 

  17. Malliavin, P.: Stochastic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 313. Springer, Berlin (1997) MR 1450093 (99b:60073)

    Google Scholar 

  18. Marinelli, C., Nualart, E., Quer-Sardanyons, L.: Existence and regularity of the density for the solution to semilinear dissipative parabolic spdes, arXiv:1202.4610

    Google Scholar 

  19. Mellouk, M., Márquez-Carreras, D.,  Sarrà, M.: On stochastic partial differential equations with spatially correlated noise: smoothness of the law. Stochastic Process. Appl. 93(2), 269–284 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27(2), 803–844 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21.  Nourdin, I., Viens, F.G.: Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 14(78), 2287–2309 (2009) MR 2556018 (2011a:60147)

    Google Scholar 

  22. Nualart, D.: The Malliavin calculus and related topics, 2nd edn. Probability and its Applications (New York). Springer, Berlin (2006)

    Google Scholar 

  23.  Nualart, D.,  Quer-Sardanyons, L.: Existence and smoothness of the density for spatially homogeneous SPDEs, Potential Anal. 27(3), 281–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nualart, D., Quer-Sardanyons, L.: Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations. Stochastic Process. Appl. 119(11), 3914–3938 (2009) MR 2552310 (2011g:60113)

    Google Scholar 

  25. Nualart, D., Quer-Sardanyons, L.: Optimal Gaussian density estimates for a class of stochastic equations with additive noise. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14(1), 25–34 (2011) MR 2785746 (2012e:60155)

    Google Scholar 

  26. Nualart, E., Quer-Sardanyons, L.: Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension. Stochastic Process. Appl. 122(1), 418–447 (2012) MR 2860455

    Google Scholar 

  27. Pardoux, É, Zhang, T.S.: Absolute continuity of the law of the solution of a parabolic SPDE. J. Funct. Anal. 112(2), 447–458 (1993) MR MR1213146 (94k:60095)

    Google Scholar 

  28. Peszat, S.: The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ. 2(3), 383–394 (2002) MR 2003k:60157

    Google Scholar 

  29. Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Process. Appl. 72(2), 187–204 (1997) MR MR1486552 (99k:60166)

    Google Scholar 

  30. Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 116(3), 421–443 (2000) MR 2001f:60071

    Google Scholar 

  31. Quer-Sardanyons, L., Sanz-Solé, M.: Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation. J. Funct. Anal. 206(1), 1–32 (2004) MR 2 024 344

    Google Scholar 

  32. Quer-Sardanyons, L., Sanz-Solé, M.: A stochastic wave equation in dimension 3: smoothness of the law. Bernoulli 10(1), 165–186 (2004) MR 2 044 597

    Google Scholar 

  33. Sanz-Solé, M.: Malliavin calculus, Fundamental Sciences, EPFL Press, Lausanne, 2005, With applications to stochastic partial differential equations. MR 2167213 (2006h:60005)

    Google Scholar 

  34. Schwartz, L.: Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris (1966) MR 35 #730

    Google Scholar 

  35. Walsh, J.B.: An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, pp. 265–439. Springer, Berlin (1986) MR 88a:60114

    Google Scholar 

Download references

Acknowledgements

Part of this work has been done while the author visited the Centre Interfacultaire Bernoulli at the École Polytechnique Fédérale de Lausanne, to which he would like to thank for the financial support, as well as to the National Science Foundation. Lluís Quer-Sardanyons was supported by the grant MICINN-FEDER Ref. MTM2009-08869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluís Quer-Sardanyons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Quer-Sardanyons, L. (2013). Gaussian Upper Density Estimates for Spatially Homogeneous SPDEs. In: Viens, F., Feng, J., Hu, Y., Nualart , E. (eds) Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5906-4_13

Download citation

Publish with us

Policies and ethics