Skip to main content

Gene Regulation of Prominin-1 (CD133) in Normal and Cancerous Tissues

  • Chapter
  • First Online:
Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 777))

Abstract

A pentaspan membrane glycoprotein prominin-1 (frequently called CD133 in human) is widely used as a surface marker to identify and isolate normal stem/progenitor cells from various organs, although it is also expressed in some types of differentiated cells. Since CD133 was identified as a universal marker to isolate cancer stem cells (CSCs) in tumors derived from multiple tissues, much attention has been directed toward the relationship between its gene regulation and identity of CSCs (i.e., cancer stemness). Prominin-1 (PROM1) gene possesses five alternative promoters yielding multiple first exons within the 5′-untranslated region (UTR) and also splicing variants affecting the open reading frame (ORF) sequence, implicating the complicated gene regulation in a context-dependent manner. This chapter aims to organize the accumulated findings on prominin-1 with a focus on its altered expression and regulation in normal and cancerous cells and to discuss potential regulatory networks underlying cancer stemness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fargeas CA, Joester A, Missol-Kolka E et al (2004) Identification of novel prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J Cell Sci 117:4301–4311

    Article  CAS  PubMed  Google Scholar 

  2. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  CAS  PubMed  Google Scholar 

  3. Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    CAS  PubMed  Google Scholar 

  4. Miraglia S, Godfrey W, Yin AH et al (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    CAS  PubMed  Google Scholar 

  5. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  6. Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  PubMed  Google Scholar 

  7. Suetsugu A, Nagaki M, Aoki H et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824

    Article  CAS  PubMed  Google Scholar 

  8. O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  9. Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  CAS  PubMed  Google Scholar 

  10. Karbanová J, Missol-Kolka E, Fonseca AV et al (2008) The stem cell marker CD133 (prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 56:977–993

    Article  PubMed  Google Scholar 

  11. Zhu L, Gibson P, Currle DS et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    Article  CAS  PubMed  Google Scholar 

  12. Zacchigna S, Oh H, Wilsch-Bräuninger M et al (2009) Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci 29:2297–2308

    Article  CAS  PubMed  Google Scholar 

  13. Maw MA, Corbeil D, Koch J et al (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34

    Article  CAS  PubMed  Google Scholar 

  14. Fargeas CA, Florek M, Huttner WB et al (2003) Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 278:8586–8596

    Article  CAS  PubMed  Google Scholar 

  15. Fargeas CA, Huttner WB, Corbeil D (2007) Nomenclature of prominin-1 (CD133) splice variants – an update. Tissue Antigens 69:602–606

    Article  CAS  PubMed  Google Scholar 

  16. Shmelkov SV, Jun L, St Clair R et al (2004) Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103:2055–2061

    Article  CAS  PubMed  Google Scholar 

  17. Tabu K, Sasai K, Kimura T et al (2008) Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 18:1037–1046

    Article  CAS  PubMed  Google Scholar 

  18. Huttner WB, Brand M (1997) Asymmetric division and polarity of neuroepithelial cells. Curr Opin Neurobiol 7:29–39

    Article  CAS  PubMed  Google Scholar 

  19. Corbeil D, Röper K, Fargeas CA et al (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  CAS  PubMed  Google Scholar 

  20. Röper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592

    Article  PubMed  Google Scholar 

  21. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  22. Pfenninger CV, Roschupkina T, Hertwig F et al (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736

    Article  CAS  PubMed  Google Scholar 

  23. Merkle FT, Tramontin AD, Garcia-Verdugo JM et al (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101:17528–17532

    Article  CAS  PubMed  Google Scholar 

  24. Spassky N, Merkle FT, Flames N et al (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18

    Article  CAS  PubMed  Google Scholar 

  25. Coskun V, Wu H, Blanchi B et al (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105:1026–1031

    Article  CAS  PubMed  Google Scholar 

  26. Corbeil D, Joester A, Fargeas CA et al (2009) Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia 57:860–874

    Article  PubMed  Google Scholar 

  27. Liu C, Sage JC, Miller MR et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Bhatia R (2011) Stem cell quiescence. Clin Cancer Res 17:4936–4941

    Article  CAS  PubMed  Google Scholar 

  29. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  30. Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  CAS  PubMed  Google Scholar 

  31. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  32. Gaudet F, Hodgson JG, Eden A et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  33. Yi JM, Tsai HC, Glockner SC et al (2008) Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res 68:8094–8103

    Article  CAS  PubMed  Google Scholar 

  34. Baba T, Convery PA, Matsumura N et al (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28:209–218

    Article  CAS  PubMed  Google Scholar 

  35. You H, Ding W, Rountree CB (2010) Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology 51:1635–1644

    Article  CAS  PubMed  Google Scholar 

  36. Ikushima H, Todo T, Ino Y et al (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514

    Article  CAS  PubMed  Google Scholar 

  37. Fukamachi H, Shimada S, Ito K et al (2011) CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation. Cancer Sci 102:1313–1321

    Article  CAS  PubMed  Google Scholar 

  38. Kim I, Saunders TL, Morrison SJ (2007) Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130:470–483

    Article  CAS  PubMed  Google Scholar 

  39. He S, Kim I, Lim MS et al (2011) Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. Genes Dev 25:1613–1627

    Article  CAS  PubMed  Google Scholar 

  40. Sohn J, Natale J, Chew LJ et al (2006) Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. J Neurosci 26:9722–9735

    Article  CAS  PubMed  Google Scholar 

  41. Mak AB, Nixon AM, Moffat J (2012) The mixed lineage leukemia (MLL) fusion-associated gene AF4 promotes CD133 transcription. Cancer Res 72:1929–1934

    Article  CAS  PubMed  Google Scholar 

  42. Uckun FM, Herman-Hatten K, Crotty ML et al (1998) Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood 92:810–821

    CAS  PubMed  Google Scholar 

  43. Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16:92–106

    Article  CAS  PubMed  Google Scholar 

  44. Guenther MG, Lawton LN, Rozovskaia T et al (2008) Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 22:3403–3408

    Article  CAS  PubMed  Google Scholar 

  45. Tabu K, Kimura T, Sasai K et al (2010) Analysis of an alternative human CD133 promoter reveals the implication of Ras/ERK pathway in tumor stem-like hallmarks. Mol Cancer 9:39

    Article  PubMed  Google Scholar 

  46. Imai Y, Ohmori K, Yasuda S et al (2009) Breast cancer resistance protein/ABCG2 is differentially regulated downstream of extracellular signal-regulated kinase. Cancer Sci 100:1118–1127

    Article  CAS  PubMed  Google Scholar 

  47. Shen H, Xu W, Luo W et al (2011) Upregulation of mdr1 gene is related to activation of the MAPK/ERK signal transduction pathway and YB-1 nuclear translocation in B-cell lymphoma. Exp Hematol 39:558–569

    Article  CAS  PubMed  Google Scholar 

  48. Bernhard EJ, Kao G, Cox AD et al (1996) The farnesyltransferase inhibitor FTI-277 radiosensitizes H-ras-transformed rat embryo fibroblasts. Cancer Res 56:1727–1730

    CAS  PubMed  Google Scholar 

  49. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161

    Article  CAS  PubMed  Google Scholar 

  50. McCord AM, Jamal M, Williams ES et al (2009) CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin Cancer Res 15:5145–5153

    Article  CAS  PubMed  Google Scholar 

  51. Wang FS, Wang CJ, Chen YJ et al (2004) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 279:10331–10337

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto K, Arao T, Tanaka K et al (2009) mTOR signal and hypoxia-inducible factor-1 alpha regulate CD133 expression in cancer cells. Cancer Res 69:7160–7164

    Article  CAS  PubMed  Google Scholar 

  53. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  54. Bourseau-Guilmain E, Griveau A, Benoit JP et al (2011) The importance of the stem cell marker prominin-1/CD133 in the uptake of transferrin and in iron metabolism in human colon cancer Caco-2 cells. PLoS One 6:e25515

    Article  CAS  PubMed  Google Scholar 

  55. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  CAS  PubMed  Google Scholar 

  56. Jokilehto T, Jaakkola PM (2010) The role of HIF prolyl hydroxylases in tumour growth. J Cell Mol Med 14:758–770

    Article  CAS  PubMed  Google Scholar 

  57. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  Google Scholar 

  58. Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  CAS  PubMed  Google Scholar 

  59. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  60. Griguer CE, Oliva CR, Gobin E et al (2008) CD133 is a marker of bioenergetic stress in human glioma. PLoS One 3:e3655

    Article  PubMed  Google Scholar 

  61. Tavazoie M, Van der Veken L, Silva-Vargas V et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Tabu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabu, K., Bizen, N., Taga, T., Tanaka, S. (2013). Gene Regulation of Prominin-1 (CD133) in Normal and Cancerous Tissues. In: Corbeil, D. (eds) Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology. Advances in Experimental Medicine and Biology, vol 777. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5894-4_5

Download citation

Publish with us

Policies and ethics