Skip to main content

Prominin-1 (CD133): Molecular and Cellular Features Across Species

  • Chapter
  • First Online:
Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 777))

Abstract

Our knowledge of the first member of the prominin family is growing rapidly as the clinical value of prominin-1 (CD133) increases with its ever-wider use as a stem cell marker in normal and cancer tissues. Although the physiological function of this evolutionally conserved pentaspan membrane glycoprotein remains elusive, several studies have revealed new biological features regarding stem cells, cancer stem cells, and photoreceptors. The wide expression of CD133 in terminally differentiated epithelial cells, long overlooked by many authors, has attracted significant interest through the extensive investigation of human prominin-1 as a potential target for cancer therapies in various organs. Biochemically, this cholesterol-binding protein is selectively concentrated in plasma membrane protrusions, where it is associated with cholesterol-driven membrane microdomains. Clinically, mutations in the PROM1 gene are associated with various forms of retinal degeneration, which are mimicked in genetically modified mice carrying either a null allele or mutated form of prominin-1. In this introductory chapter, we attempted to review 15 years of prominin-1 study, focusing on its unique protein characteristics across species and the recent developments regarding its cell biology that may shed new light on its intriguing involvement in defining cancer-initiating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  2. Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198:281–293

    Article  PubMed  CAS  Google Scholar 

  3. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  PubMed  CAS  Google Scholar 

  4. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  5. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R et al (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    PubMed  CAS  Google Scholar 

  6. Corbeil D, Röper K, Weigmann A, Huttner WB (1998) AC133 hematopoietic stem cell antigen – human homologue of mouse kidney prominin or distinct member of a novel protein family. Blood 91:2625–2626

    PubMed  CAS  Google Scholar 

  7. Miraglia S, Godfrey W, Buck D (1998) A response to AC133 hematopoietic stem cell antigen: human homologue of mouse kidney prominin or distinct member of a novel protein family? Blood 91:4390–4391

    PubMed  CAS  Google Scholar 

  8. Corbeil D, Röper K, Hellwig A, Tavian M, Miraglia S et al (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520

    Article  PubMed  CAS  Google Scholar 

  9. Florek M, Haase M, Marzesco A-M, Freund D, Ehninger G et al (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26

    Article  PubMed  CAS  Google Scholar 

  10. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC et al (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34

    Article  PubMed  CAS  Google Scholar 

  11. Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB et al (2004) Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J Cell Sci 117:4301–4311

    Article  PubMed  CAS  Google Scholar 

  12. Jászai J, Janich P, Farkas LM, Fargeas CA, Huttner WB et al (2007) Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic exocrine glands of adult mice. Histochem Cell Biol 128:409–419

    Article  PubMed  CAS  Google Scholar 

  13. Karbanová J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P et al (2008) The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 56:977–993

    Article  PubMed  CAS  Google Scholar 

  14. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    PubMed  CAS  Google Scholar 

  15. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    Article  PubMed  CAS  Google Scholar 

  16. Fargeas CA, Florek M, Huttner WB, Corbeil D (2003) Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 278:8586–8596

    Article  PubMed  CAS  Google Scholar 

  17. Yu Y, Flint A, Dvorin EL, Bischoff J (2002) AC133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem 277:20711–20716

    Article  PubMed  CAS  Google Scholar 

  18. Fargeas CA, Corbeil D, Huttner WB (2003) AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Stem Cells 21:506–508

    Article  PubMed  CAS  Google Scholar 

  19. Fargeas CA, Fonseca AV, Huttner WB, Corbeil D (2006) Prominin-1 (CD133): from progenitor cells to human diseases. Future Lipidol 1:213–225

    Article  CAS  Google Scholar 

  20. Corbeil D, Fargeas CA, Huttner WB (2001) Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem Biophys Res Commun 285:939–944

    Article  PubMed  CAS  Google Scholar 

  21. McGrail M, Batz L, Noack K, Pandey S, Huang Y et al (2010) Expression of the zebrafish CD133/prominin1 genes in cellular proliferation zones in the embryonic central nervous system and sensory organs. Dev Dyn 239:1849–1857

    Article  PubMed  CAS  Google Scholar 

  22. Jászai J, Fargeas CA, Graupner S, Tanaka EM, Brand M et al (2011) Distinct and conserved prominin-1/CD133–positive retinal cell populations identified across species. PLoS One 6:e17590

    Article  PubMed  CAS  Google Scholar 

  23. Han Z, Papermaster DS (2011) Identification of three prominin homologs and characterization of their messenger RNA expression in Xenopus laevis tissues. Mol Vis 17:1381–1396

    PubMed  CAS  Google Scholar 

  24. Zelhof AC, Hardy RW, Becker A, Zuker CS (2006) Transforming the architecture of compound eyes. Nature 443:696–699

    Article  PubMed  CAS  Google Scholar 

  25. Jászai J, Fargeas CA, Florek M, Huttner WB, Corbeil D (2007) Focus on molecules: prominin-1 (CD133). Exp Eye Res 85:585–586

    Article  PubMed  CAS  Google Scholar 

  26. Boivin D, Labbé D, Fontaine N, Lamy S, Beaulieu E et al (2009) The stem cell marker CD133 (prominin-1) is phosphorylated on cytoplasmic tyrosine-828 and tyrosine-852 by Src and Fyn tyrosine kinases. Biochemistry 48:3998–4007

    Article  PubMed  CAS  Google Scholar 

  27. Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  PubMed  CAS  Google Scholar 

  28. Gaboriaud C, Bissery V, Benchetrit T, Mornon JP (1987) Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett 224:149–155

    Article  PubMed  CAS  Google Scholar 

  29. Fargeas CA, Huttner WB, Corbeil D (2007) Nomenclature of prominin-1 (CD133) splice variants – an update. Tissue Antigens 69:602–606

    Article  PubMed  CAS  Google Scholar 

  30. Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA et al (2004) Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103:2055–2061

    Article  PubMed  CAS  Google Scholar 

  31. Pleshkan VV, Vinogradova TV, Sverdlov ED (2008) Methylation of the prominin 1 TATA-less main promoters and tissue specificity of their transcript content. Biochim Biophys Acta 1779:599–605

    Article  PubMed  CAS  Google Scholar 

  32. Yi JM, Tsai HC, Glöckner SC, Lin S, Ohm JE et al (2008) Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res 68:8094–8103

    Article  PubMed  CAS  Google Scholar 

  33. Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E et al (2008) Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 18:1037–1046

    Article  PubMed  CAS  Google Scholar 

  34. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E et al (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28:209–218

    Article  PubMed  CAS  Google Scholar 

  35. Campbell EA, O’Hara L, Catalano RD, Sharkey AM, Freeman TC et al (2006) Temporal expression profiling of the uterine luminal epithelium of the pseudo-pregnant mouse suggests receptivity to the fertilized egg is associated with complex transcriptional changes. Hum Reprod 21:2495–2513

    Article  PubMed  CAS  Google Scholar 

  36. Husain SM, Shou Y, Sorrentino BP, Handgretinger R (2006) Isolation, molecular cloning and in vitro expression of rhesus monkey (Macaca mulatta) prominin-1.s1 complementary DNA encoding a potential hematopoietic stem cell antigen. Tissue Antigens 68:317–324

    Article  PubMed  CAS  Google Scholar 

  37. Corbeil D, Joester A, Fargeas CA, Jászai J, Garwood J et al (2009) Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia 57:860–874

    Article  PubMed  Google Scholar 

  38. Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  PubMed  CAS  Google Scholar 

  39. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  PubMed  CAS  Google Scholar 

  40. Huttner WB, Zimmerberg J (2001) Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13:478–484

    Article  PubMed  CAS  Google Scholar 

  41. Zhou F, Cui C, Ge Y, Chen H, Li Q et al (2010) Alpha2,3-Sialylation regulates the stability of stem cell marker CD133. J Biochem 148:273–280

    Article  PubMed  CAS  Google Scholar 

  42. Sgambato A, Puglisi MA, Errico F, Rafanelli F, Boninsegna A et al (2010) Post-translational modulation of CD133 expression during sodium butyrate-induced differentiation of HT29 human colon cancer cells: implications for its detection. J Cell Physiol 224:234–241

    PubMed  CAS  Google Scholar 

  43. Mak AB, Blakely KM, Williams RA, Penttilä PA, Shukalyuk AI et al (2011) CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope. J Biol Chem 286:41046–41056

    Article  PubMed  CAS  Google Scholar 

  44. Hemmoranta H, Satomaa T, Blomqvist M, Heiskanen A, Aitio O et al (2007) N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Exp Hematol 35:1279–1292

    Article  PubMed  CAS  Google Scholar 

  45. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L et al (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70:719–729

    Article  PubMed  CAS  Google Scholar 

  46. Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L (2008) Stem cell marker prominin- 1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas 36:e1–e6

    Article  PubMed  Google Scholar 

  47. Immervoll H, Hoem D, Steffensen OJ, Miletic H, Molven A (2011) Visualization of CD44 and CD133 in normal pancreas and pancreatic ductal adenocarcinomas: non-overlapping membrane expression in cell populations positive for both markers. J Histochem Cytochem 59:441–455

    Article  PubMed  CAS  Google Scholar 

  48. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A (2008) Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8:48

    Article  PubMed  CAS  Google Scholar 

  49. Bidlingmaier S, Zhu X, Liu B (2008) The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 86:1025–1032

    Article  PubMed  CAS  Google Scholar 

  50. Fargeas CA, Karbanová J, Jászai J, Corbeil D (2011) CD133 and membrane microdomains: old facets for future hypotheses. World J Gastroenterol 17:4149–4152

    Article  PubMed  CAS  Google Scholar 

  51. Dubreuil V, Marzesco A-M, Corbeil D, Huttner WB, Wilsch-Bräuninger M (2007) Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 176:483–495

    Article  PubMed  CAS  Google Scholar 

  52. Florek M, Bauer N, Janich P, Wilsch-Bräuninger M, Fargeas CA et al (2007) Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into the urine. Cell Tissue Res 328:31–47

    Article  PubMed  CAS  Google Scholar 

  53. Giebel B, Corbeil D, Beckmann J, Höhn J, Freund D et al (2004) Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood 104:2332–2338

    Article  PubMed  CAS  Google Scholar 

  54. Fonseca AV, Freund D, Bornhäuser M, Corbeil D (2010) Polarization and migration of hematopoietic stem and progenitor cells rely on the RhoA/ROCK I pathway and an active reorganization of the microtubule network. J Biol Chem 285:31661–31671

    Article  PubMed  CAS  Google Scholar 

  55. Röper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592

    Article  PubMed  Google Scholar 

  56. Corbeil D, Marzesco A-M, Fargeas CA, Huttner WB (2010) Prominin-1, a distinct cholesterol–binding membrane protein, and the organization of the apical plasma membrane of epithelial cells. Subcell Biochem 51:399–423

    Article  PubMed  CAS  Google Scholar 

  57. Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581:1783–1787

    Article  PubMed  CAS  Google Scholar 

  58. Gillette JM, Larochelle A, Dunbar CE, Lippincott-Schwartz J (2009) Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nat Cell Biol 11:303–305

    Article  PubMed  CAS  Google Scholar 

  59. Taïeb N, Maresca M, Guo XJ, Garmy N, Fantini J et al (2009) The first extracellular domain of the tumour stem cell marker CD133 contains an antigenic ganglioside-binding motif. Cancer Lett 278:164–173

    Article  PubMed  CAS  Google Scholar 

  60. Marzesco A-M, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K et al (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  PubMed  CAS  Google Scholar 

  61. Huttner HB, Janich P, Köhrmann M, Jászai J, Siebzehnrubl F et al (2008) The stem cell marker prominin-1/CD133 on membrane particles in human cerebrospinal fluid offers novel approaches for studying CNS disease. Stem Cells 26:698–705

    Article  PubMed  CAS  Google Scholar 

  62. Huttner HB, Corbeil D, Thirmeyer C, Coras R, Köhrmann M et al (2012) Increased membrane shedding–indicated by an elevation of CD133-enriched membrane particles – into the CSF in partial epilepsy. Epilepsy Res 99:101–106

    Article  PubMed  CAS  Google Scholar 

  63. Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P et al (2005) The somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 23:791–804

    Article  PubMed  CAS  Google Scholar 

  64. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 98:10716–10721

    Article  PubMed  CAS  Google Scholar 

  65. Carpenter MK, Rosler E, Rao MS (2003) Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5:79–88

    Article  PubMed  CAS  Google Scholar 

  66. Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23:699–708

    Article  PubMed  CAS  Google Scholar 

  67. Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR et al (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA 98:113–118

    Article  PubMed  CAS  Google Scholar 

  68. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99:4391–4396

    Article  PubMed  CAS  Google Scholar 

  69. Ito Y, Hamazaki TS, Ohnuma K, Tamaki K, Asashima M et al (2007) Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. J Invest Dermatol 127:1052–1060

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki A, Sekiya S, Onishi M, Oshima N, Kiyonari H et al (2008) Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology 48:1964–1978

    Article  PubMed  CAS  Google Scholar 

  71. Gashaw I, Dushaj O, Behr R, Biermann K, Brehm R et al (2007) Novel germ cell markers characterize testicular seminoma and fetal testis. Mol Hum Reprod 13:721–727

    Article  PubMed  CAS  Google Scholar 

  72. Jászai J, Fargeas CA, Haase M, Farkas LM, Huttner WB et al (2008) Robust expression of prominin-2 all along the adult male reproductive system and urinary bladder. Histochem Cell Biol 130:749–759

    Article  PubMed  CAS  Google Scholar 

  73. Han Z, Anderson DW, Papermaster DS (2012) Prominin-1 localizes to the open rims of outer segment lamellae in Xenopus laevis rod and cone photoreceptors. Invest Ophthalmol Vis Sci 53:361–373

    Article  PubMed  CAS  Google Scholar 

  74. Bauer N, Fonseca AV, Florek M, Freund D, Jászai J et al (2008) New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 188:127–138

    Article  PubMed  CAS  Google Scholar 

  75. Bornhäuser M, Eger L, Oelschlaegel U, Auffermann-Gretzinger S, Kiani A et al (2005) Rapid reconstitution of dendritic cells after allogeneic transplantation of CD133+ selected hematopoietic stem cells. Leukemia 19:161–165

    PubMed  Google Scholar 

  76. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E et al (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736

    Article  PubMed  CAS  Google Scholar 

  77. Coskun V, Wu H, Blanchi B, Tsao S, Kim K et al (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105:1026–1031

    Article  PubMed  CAS  Google Scholar 

  78. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    Article  PubMed  CAS  Google Scholar 

  79. Uchida N, Buck DW, He D, Reitsma MJ, Masek M et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    Article  PubMed  CAS  Google Scholar 

  80. Tamaki S, Eckert K, He D, Sutton R, Doshe M et al (2002) Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res 69:976–986

    Article  PubMed  CAS  Google Scholar 

  81. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK et al (2003) Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res 74:838–851

    Article  PubMed  CAS  Google Scholar 

  82. Lee A, Kessler JD, Read T-A, Kaiser C, Corbeil D et al (2005) Isolation of neural stem cells from postnatal cerebellum. Nat Neurosci 8:723–729

    Article  PubMed  CAS  Google Scholar 

  83. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus M et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555

    Article  PubMed  CAS  Google Scholar 

  84. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ et al (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545

    Article  PubMed  CAS  Google Scholar 

  85. Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456:804–808

    Article  PubMed  CAS  Google Scholar 

  86. Alessandri G, Pagano S, Bez A, Benetti A, Pozzi S et al (2004) Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet 364:1872–1883

    Article  PubMed  CAS  Google Scholar 

  87. Belicchi M, Pisati F, Lopa R, Porretti L, Fortunato F et al (2004) Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res 77:475–486

    Article  PubMed  CAS  Google Scholar 

  88. Snippert HJ, van Es JH, van den Born M, Begthel H, Stange DE et al (2009) Prominin-1/CD133 marks stem cells and early progenitors in mouse intestine. Gastroenterology 136:2187–2194

    Article  PubMed  CAS  Google Scholar 

  89. Gregory CA, Prockop DJ, Spees JL (2005) Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 306:330–335

    Article  PubMed  CAS  Google Scholar 

  90. Pozzobon M, Piccoli M, Ditadi A, Bollini S, Destro R et al (2009) Mesenchymal stromal cells can be derived from bone marrow CD133+ cells: implications for therapy. Stem Cells Dev 18:497–510

    Article  PubMed  CAS  Google Scholar 

  91. Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M et al (2011) Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 25:1278–1285

    Article  PubMed  CAS  Google Scholar 

  92. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  93. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    Article  PubMed  CAS  Google Scholar 

  94. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112

    PubMed  CAS  Google Scholar 

  95. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  96. Sussman LK, Upalakalin JN, Roberts MJ, Kocher O, Benjamin LE (2003) Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma. Cancer Biol Ther 2:255–256

    Article  PubMed  CAS  Google Scholar 

  97. Lin EH, Hassan M, Li Y, Zhao H, Nooka A et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110:534–542

    Article  PubMed  CAS  Google Scholar 

  98. Hilbe W, Dirnhofer S, Oberwasserlechner F, Schmid T, Gunsilius E et al (2004) CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol 57:965–969

    Article  PubMed  CAS  Google Scholar 

  99. Dome B, Timar J, Dobos J, Meszaros L, Raso E et al (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66:7341–7347

    Article  PubMed  CAS  Google Scholar 

  100. Mehra N, Penning M, Maas J, Beerepoot LV, van Daal N et al (2006) Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin Cancer Res 12:4859–4866

    Article  PubMed  CAS  Google Scholar 

  101. Powell TM, Paul JD, Hill JM, Thompson M, Benjamin M et al (2005) Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 25:296–301

    Article  PubMed  CAS  Google Scholar 

  102. Schatteman G (2005) Are circulating CD133+ cells biomarkers of vascular disease? Arterioscler Thromb Vasc Biol 25:270–271

    Article  PubMed  CAS  Google Scholar 

  103. Case J, Mead LE, Bessler WK, Prater D, White HA et al (2007) Human CD34  +  AC133  +  VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118

    Article  PubMed  CAS  Google Scholar 

  104. Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F et al (2007) Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 27:1572–1579

    Article  PubMed  CAS  Google Scholar 

  105. Singh S, Dirks PB (2007) Brain tumor stem cells: identification and concepts. Neurosurg Clin N Am 18:31–38

    Article  PubMed  Google Scholar 

  106. Baersch G, Baumann M, Ritter J, Jurgens H, Vormoor J (1999) Expression of AC133 and CD117 on candidate normal stem cell populations in childhood B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 107:572–580

    Article  PubMed  CAS  Google Scholar 

  107. Buhring HJ, Seiffert M, Marxer A, Weiss B, Faul C et al (1999) AC133 antigen expression is not restricted to acute myeloid leukemia blasts but is also found on acute lymphoid leukemia blasts and on a subset of CD34+ B-cell precursors. Blood 94:832–833

    PubMed  CAS  Google Scholar 

  108. Horn PA, Tesch H, Staib P, Kube D, Diehl V et al (1999) Expression of AC133, a novel hematopoietic precursor antigen, on acute myeloid leukemia cells. Blood 93:1435–1437

    PubMed  CAS  Google Scholar 

  109. Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A (2009) Expression of CD133 on leukemia initiating cells in childhood ALL. Blood 113:3287–3296

    Article  PubMed  CAS  Google Scholar 

  110. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  111. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  112. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163

    Article  PubMed  CAS  Google Scholar 

  113. Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124:1312–1321

    Article  PubMed  CAS  Google Scholar 

  114. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  115. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  116. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  117. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54:850–860

    Article  PubMed  Google Scholar 

  118. Liu G, Yuan X, Zeng Z, Tunici P, Ng H et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  CAS  Google Scholar 

  119. Bruno S, Bussolati B, Grange C, Collino F, Graziano ME et al (2006) CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 169:2223–2235

    Article  PubMed  CAS  Google Scholar 

  120. Rountree CB, Ding W, He L, Stiles B (2009) Expansion of CD133 expressing liver cancer stem cells in liver specific PTEN deleted mice. Stem Cells 27:290–299

    Article  PubMed  CAS  Google Scholar 

  121. Ding W, Mouzaki M, You H, Laird JC, Mato J et al (2009) CD133(+) liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. Hepatology 49:1277–1286

    Article  PubMed  CAS  Google Scholar 

  122. Zhu Z, Hao X, Yan M, Yao M, Ge C et al (2009) Cancer stem/progenitor cells are highly enriched in CD133(+)CD44(+) population in hepatocellular carcinoma. Int J Cancer 126:2067–2078

    Google Scholar 

  123. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  CAS  Google Scholar 

  124. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK et al (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3:e2637

    Article  PubMed  CAS  Google Scholar 

  125. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  PubMed  CAS  Google Scholar 

  126. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F et al (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6:92–97

    PubMed  CAS  Google Scholar 

  127. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR et al (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27:2875–2883

    PubMed  CAS  Google Scholar 

  128. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  129. Miki J, Furusato B, Li H, Gu Y, Takahashi H et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67:3153–3161

    Article  PubMed  CAS  Google Scholar 

  130. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM et al (2005) ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–4333

    Article  PubMed  CAS  Google Scholar 

  131. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ et al (2007) Increased expression of stem cell markers in malignant melanoma. Mod Pathol 20:102–107

    Article  PubMed  CAS  Google Scholar 

  132. Bongiorno MR, Doukaki S, Malleo F, Aricò M (2008) Identification of progenitor cancer stem cell in lentigo maligna melanoma. Dermatol Ther 21:S1–S5

    Article  PubMed  Google Scholar 

  133. Gedye C, Quirk J, Browning J, Svobodová S, John T et al (2009) Cancer/testis antigens can be immunological targets in clonogenic CD133(+) melanoma cells. Cancer Immunol Immunother 58:1635–1646

    Article  PubMed  CAS  Google Scholar 

  134. Zito G, Richiusa P, Bommarito A, Carissimi E, Russo L et al (2008) In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS One 3:e3544

    Article  PubMed  CAS  Google Scholar 

  135. Veselska R, Hermanova M, Loja T, Chlapek P, Zambo I et al (2008) Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines. BMC Cancer 8:300

    Article  PubMed  CAS  Google Scholar 

  136. Tirino V, Desiderio V, d’Aquino R, De Francesco F, Pirozzi G et al (2008) Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One 3:e3469

    Article  PubMed  CAS  Google Scholar 

  137. Yin S, Li J, Hu C, Chen X, Yao M et al (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120:1444–1450

    Article  PubMed  CAS  Google Scholar 

  138. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824

    Article  PubMed  CAS  Google Scholar 

  139. Rappa G, Fodstad O, Lorico A (2008) The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017

    Article  PubMed  CAS  Google Scholar 

  140. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:755–760

    Article  CAS  Google Scholar 

  141. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  142. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  PubMed  CAS  Google Scholar 

  143. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848

    Article  PubMed  CAS  Google Scholar 

  144. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  145. Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR et al (2012) CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol (2012)

    Google Scholar 

  146. Zhang Q, Zulfiqar F, Xiao X, Riazuddin SA, Ahmad Z et al (2007) Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum Genet 122:293–299

    Article  PubMed  CAS  Google Scholar 

  147. Yang Z, Chen Y, Lillo C, Chien J, Yu Z et al (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118:2908–2916

    Article  PubMed  CAS  Google Scholar 

  148. Pras E, Abu A, Rotenstreich Y, Avni I, Reish O et al (2009) Cone-rod dystrophy and a frameshift mutation in the PROM1 gene. Mol Vis 15:1709–1716

    PubMed  CAS  Google Scholar 

  149. Permanyer J, Navarro R, Friedman J, Pomares E, Castro-Navarro J et al (2010) Autosomal recessive retinitis pigmentosa with early macular affectation caused by premature truncation in PROM1. Invest Ophthalmol Vis Sci 51:2656–2663

    Article  PubMed  Google Scholar 

  150. Littink KW, Koenekoop RK, van den Born LI, Collin RW, Moruz L et al (2010) Homozygosity mapping in patients with cone-rod dystrophy: novel mutations and clinical characterizations. Invest Ophthalmol Vis Sci 51:5943–5951

    Article  PubMed  Google Scholar 

  151. Zacchigna S, Oh H, Wilsch-Bräuninger M, Missol-Kolka E, Jászai J et al (2009) Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci 29:2297–2308

    Article  PubMed  CAS  Google Scholar 

  152. Husain N, Pellikka M, Hong H, Klimentova T, Choe KM et al (2006) The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell 11:483–493

    Article  PubMed  CAS  Google Scholar 

  153. Kosodo Y, Röper K, Haubensak W, Marzesco A-M, Corbeil D et al (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324

    Article  PubMed  CAS  Google Scholar 

  154. Fonseca AV, Bauer N, Corbeil D (2008) The stem cell marker CD133 meets the endosomal compartment-new insights into the cell division of hematopoietic stem cells. Blood Cells Mol Dis 41:194–195

    Article  PubMed  CAS  Google Scholar 

  155. Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J et al (2011) Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2:e200

    Article  PubMed  CAS  Google Scholar 

  156. Bauer N, Wilsch-Bräuninger M, Karbanová J, Fonseca AV, Strauss D et al (2011) Hematopoietic stem cell differentiation promotes the release of prominin-1/CD133–containing membrane vesicles – a role of the endocytic-exocytic pathway. EMBO Mol Med 3:398–409

    Article  PubMed  CAS  Google Scholar 

  157. Ettinger AW, Wilsch-Bräuninger M, Marzesco AM, Bickle M, Lohmann A et al (2011) Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun 2:503

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We warmly thank all the collaborators for their major contributions to the prominin field during the last 15 years. We are indebted to Wieland B. Huttner, whose laboratory discovered murine prominin-1; David W. Buck, whose laboratory discovered human prominin-1; Marion A. Maw, who described the first mutation in the PROM1 gene; Anne-Marie Marzesco, who noticed prominin-1-containing membrane vesicles; and Peter Carmeliet, whose laboratory generated prominin-1 knockout mice. We thank Andrea Hellwig and Michaela Wilsch-Bräuninger for the excellent electron microscopy demonstrating the preference of prominin-1 for plasma membrane protrusions. The corresponding author (D.C.) wants to express here his particular gratitude to W.B. Huttner for his constant support. Deutsche Forschungsgemeinschaft (DFG) supported D.C. (SFB655 B3; TRR83 #6 and CO298/5-1). Intramural funds of the Medical Faculty of Technische Universität Dresden and DFG supported J.J. (MeDDrive38 grants and CO298/5-1, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Corbeil Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corbeil, D., Karbanová, J., Fargeas, C.A., Jászai, J. (2013). Prominin-1 (CD133): Molecular and Cellular Features Across Species. In: Corbeil, D. (eds) Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology. Advances in Experimental Medicine and Biology, vol 777. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5894-4_1

Download citation

Publish with us

Policies and ethics