Skip to main content

Microbial Interactions in the Arsenic Cycle: Adoptive Strategies and Applications in Environmental Management

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 224

Abstract

The term “arsenic” is derived from the Persian word “zarnikh” meaning “yellow orpiment” (As2S3) (Rensing and Rosen 2009). Arsenic (As) is a metalloid (Table 1) and has a single naturally occurring isotope As75 (Rensing and Rosen 2009). It occurs in four primary oxidation states, viz., arsenate [As(V)], arsenite [As(III)], elemental arsenic [As(0)], and arsenide [As(−III)]. Arsenic compounds have no known biological roles. Formerly, As found applications in medicine in ancient civilizations (Datta et al. 1979). It has also been used in the cosmetic and agriculture industries (insecticide, desiccant, rodenticide, and herbicide). However, in recent times, the element has acquired notoriety for its toxicity to humans. The Agency for Toxic Substances and Disease Registry (ATSDR) has included arsenic in the list of “20 most hazardous substances” (Rensing and Rosen 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Cresser MS, Meharg AA, Feldman J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.)[J]. Environ Sci Technol 36:962–968

    CAS  Google Scholar 

  • Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536S–1538S

    CAS  Google Scholar 

  • Acharyya SK, Chakraborty P, Lahiri S, Raymahashay BC, Guha S, Bhowmik A (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–547

    CAS  Google Scholar 

  • Ahamed S, Sengupta MK, Mukherjee A, Hossain MA, Das B, Nayak B, Pal A, Mukherjee SC, Pati S, Dutta RN, Chatterjee G, Mukherjee A, Srivastava R, Chakraborti D (2006) Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga Plain, India: a severe danger. Sci Total Environ 370:310–322

    CAS  Google Scholar 

  • Ahmad S, Kitchin KT, Cullen WR (2002) Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin. Toxicol Lett 133:47–57

    CAS  Google Scholar 

  • Ajees AA, Yang J, Rosen BP (2011) The ArsD As(III) metallochaperone. Biometals 24:391–399

    Google Scholar 

  • Alexander M (2000) Ageing, bioavailability and overestimation of risk form environmental pollutants. Environ Sci Technol 34:4259–4265

    CAS  Google Scholar 

  • Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ, Hoehn E, Yang H, Johnson CA (2008) Statistical modeling of global geogenic arsenic contamination in groundwater. Environ Sci Technol 42:3669–3675

    CAS  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic contaminated sites in New Zealand. Curr Microbiol 48:341–347

    CAS  Google Scholar 

  • Andrewes P, Cullen WR, Polishchuk E (2000) Arsenic and antimony biomethylation by Scopulariopsis brevicaulis: Interaction of arsenic and antimony compounds. Environ Sci Technol 34:2249–2253

    Google Scholar 

  • Arunkumar AI, Campanello GC, Giedroc DP (2009) Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state. Proc Natl Acad Sci U S A 106:18179–18182

    Google Scholar 

  • Aschengrau A, Zierler S, Cohen A (1989) Quality of community drinking water and the occurrence of spontaneous abortion. Arch Environ Health 44:283–290

    CAS  Google Scholar 

  • Bachofen R, Birch L, Buchs U, Ferloni P, Flynn I, Jud G, Tahedel H, Chasteen TG (1995) Volatilization of arsenic compounds by microorganisms. In: Hinchee RE (ed) Bioremediation of inorganics. Batelle Press, Columbus, OH, pp 103–108

    Google Scholar 

  • Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338

    CAS  Google Scholar 

  • Balasoiu C, Zagury G, Deshenes L (2001) Partitioning and speciation of chromium, copper and arsenic in CCA-contaminated soils: influence of soil composition. Sci Total Environ 280:239–255

    CAS  Google Scholar 

  • Bannette MS, Guan Z, Laurberg M, Su XD (2001) Bacillus subtilis arsenate reductase is structurally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci U S A 98:13577–13582

    Google Scholar 

  • Beane Freeman LE, Dennis LK, Lynch CF, Thorne PS, Just CL (2004) Toenail arsenic content and cutaneous melanoma in Iowa. Am J Epidemiol 160:679–687

    Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    CAS  Google Scholar 

  • Bhat NS (2007) Characterization of arsenic resistant bacteria and novel gene cluster in Bacillus sp. CDB3. Ph D thesis, School of biological sciences, University of Wollongong

    Google Scholar 

  • Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies DH, Simon S (eds) Molecular microbiology of heavy metals. Springer, Heidelberg, New York, pp 371–406

    Google Scholar 

  • Bhattacharjee H, Ho YS, Rosen BP (2001) Genomic organization and chromosomal localization of the Asna1 gene, a mouse homologue of a bacterial arsenic-translocating ATPase gene. Gene 272:291–299

    CAS  Google Scholar 

  • Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporin: ancient channel for metalloids. J Biol 7:33

    Google Scholar 

  • Blair PC, Thompson MB, Bechtold M, Wilson RE, Moorman Fowler BA (1990) Evidence for oxidative damage to red blood cells in mice induced by arsine gas. Toxicology 63:25–34

    CAS  Google Scholar 

  • Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ulaszewski S (1997) Isolation of three contiguous genes, ACR1, ACR2, and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13:819–828

    CAS  Google Scholar 

  • Botes E, van Heerden E, Litthauer D (2007) Hyper-resistance to arsenic to arsenic in bacteria isolated from an antimony mine in South Africa. S Afr J Sci 103:279–281

    CAS  Google Scholar 

  • Bowell RJ, Parshley J (2001) Arsenic cycling in mining environment. Characterization of waste, chemistry, and treatment and disposal, proceedings and summary report on USA. EPA workshop on managing arsenic risks to the environment, Denver, Colorado, USA, 1–3 May 2001

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. University Press, Cambridge, p 380

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    CAS  Google Scholar 

  • Buchet JP, Lauwerys R (1981) Evaluation of exposure to inorganic arsenic in man. In: Facchetti S (ed) Analytical techniques for heavy metals in biological fluids. Elsevier, Amsterdam, pp 75–89

    Google Scholar 

  • Cai J, Dubow MS (1997) Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation 8:105–111

    Google Scholar 

  • Cai J, Salmon K, DuBow MS (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144:2705–2713

    CAS  Google Scholar 

  • Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:1–11

    Google Scholar 

  • Campbell DR, Chapman KE, Waldron KJ, Tottey S, Kendall S, Cavallaro G, Andreini C, Hinds J, Stoker NG, Robinson NJ, Cavet JS (2007) Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent. J Biochem (Tokyo) 282:32298–32310

    CAS  Google Scholar 

  • Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator Pteris vittata L. Environ Pollut 126:157–167

    CAS  Google Scholar 

  • Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100:2945–2950

    CAS  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    CAS  Google Scholar 

  • Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsiumarvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164

    CAS  Google Scholar 

  • Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    CAS  Google Scholar 

  • Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour Technol 97:1503–1508

    CAS  Google Scholar 

  • Chang JS, Kim YH, Kim KW (2008) The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the republic of Korea. Appl Microbiol Biotechnol 80:155–165

    CAS  Google Scholar 

  • Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139

    CAS  Google Scholar 

  • Chen CM, Misra T, Silver S, Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump: the plasmid-encoded arsenical resistance operon. J Biol Chem 261:15030–15038

    CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron C (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    CAS  Google Scholar 

  • Clausen CA (2004) Improving the two-step remediation process for CCA-treated Wood: Part II. Evaluating bacterial nutrient sources. Waste Manag 24:407–411

    CAS  Google Scholar 

  • Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S (1993) luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238

    CAS  Google Scholar 

  • Corsini A, Cavalca L, Crippa L, Zaccheo P, Andreoni V (2010) Impact of glucose on microbial community of a soil containing pyrite cinders: role of bacteria in arsenic mobilization under submerged condition. Soil Biol Biochem 42:699–707

    CAS  Google Scholar 

  • Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of Pb/P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Mineral Mag 63:777–789

    CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    CAS  Google Scholar 

  • Datta DV, Mitra JK, Chhautani PN, Chakravati RN (1979) Chronic oral arsenic intoxication as a possible etiological factor in idiopathic portal hypertension (non-cirrhotic portal fibrosis) in India. Gut 20:378–384

    CAS  Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shresta S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    Google Scholar 

  • Dave SR, Gupta KH, Tipre DR (2008) Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents. Bioresour Technol 99:7514–7520

    CAS  Google Scholar 

  • de Koning J, Thiesen S (2005) Aqua Solaris—an optimized small scale desalination system with 40 litres output per square meter based upon solar-thermal distillation. Desalination 182:503–509

    Google Scholar 

  • DeMel S, Shi J, Martin P, Rosen BP, Edwards BF (2004) Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product. Protein Sci 13:2330–2340

    CAS  Google Scholar 

  • Dey S, Rosen BP (1995) Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol 177:385–389

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Google Scholar 

  • Diorio C, Cai J, Marmor J, Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056

    CAS  Google Scholar 

  • Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35:1243–1255

    CAS  Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217

    Google Scholar 

  • Frankenberger WTJR, Arshad M (2002) Volatilisation of arsenic. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380

    Google Scholar 

  • Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    CAS  Google Scholar 

  • Gao S, Burau RG (1997) Environmental factors affecting rates of arsenic evolution from and mineralization of arsenicals in soil. J Environ Qual 26:753–763

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    CAS  Google Scholar 

  • Gebel T (2000) Confounding variables in the environmental toxicology of arsenic. Toxicology 144:155–162

    CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    CAS  Google Scholar 

  • Gibney BP, Nüsslein K (2007) Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. Chemosphere 70:329–336

    CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    CAS  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862

    CAS  Google Scholar 

  • Gillor O, Hadas O, Post AF, Belkin S (2002) Phosphorus bioavailability monitoring by a bioluminescent cyanobacterial sensor strain. J Phycol 38:107–115

    Google Scholar 

  • Gladysheva TB, Oden KL, Rosen BP (1994) Properties of the arsenate reductase of plasmid R773. Biochemistry 33:7288–7293

    CAS  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Scientia Agricola 63:90–101

    Google Scholar 

  • Götz F, Zabielski J, Philipson L, Lindberg M (1983) DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid p1258 from S. aurefl. Plasmid 9:126–137

    Google Scholar 

  • Green HH (1918) Description of a bacterium which oxidizes arsenite to arsenate and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. S Afr J Sci 14:465–467

    CAS  Google Scholar 

  • Guha Muzumdar DN (2006) Mission report to ministry of health and ministry of rural development of Cambodia, on detection, confirmation and management of arsenicosis. A WHO consultancy project report

    Google Scholar 

  • Guo XJ, Fujono Y, Kaneko S, Wu KG, Xia YJ, Yashimura T (2001) Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao Plain area, Tumer Mongolia, China. Mol Cell Biochem 222:137–140

    CAS  Google Scholar 

  • Han FX, Banin A, Triplett GB (2001) Redistribution of heavy metals in arid-zone soils under wetting-drying cycle soil moisture regime. Soil Sci 166:18e28

    Google Scholar 

  • Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensor: are they ready for environmental applications? Appl Microbiol Biotechnol 7:1–8

    Google Scholar 

  • Harvey PI, Crundwell FK (1996) The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potential. Miner Eng 9:1059–1068

    CAS  Google Scholar 

  • Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393

    CAS  Google Scholar 

  • Huysmans KD, Frankenberger WT (1991) Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water. Sci Total Environ 105:13–28

    CAS  Google Scholar 

  • Ilyaletdinov AN, Abdrashitova SA (1981) Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans. Mikrobiologiya 50:197–204

    CAS  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    CAS  Google Scholar 

  • Jackson CR, Jackson EF, Dugas SL, Gamble K, Williams SE (2003) Microbial transformation of arsenite and arsenate in natural environment. Recent Res Develop Microbiol 7:103–118

    CAS  Google Scholar 

  • Jackson CR, Horrison KG, Dugas SL (2005) Enumeration and characterization of culturable arsenate resistant bacteria in large estuary. Syst Appl Microbiol 28:727–734

    CAS  Google Scholar 

  • Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:1906–1912

    CAS  Google Scholar 

  • Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    CAS  Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    CAS  Google Scholar 

  • Ji G, Garber E, Armes L, Chen C-M, Fuchs J, Silver S (1994) Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33:7294–7299

    CAS  Google Scholar 

  • Kaise T, Fukui S (1992) The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl Organomet Chem 6:155–160

    Google Scholar 

  • Kaltreider RC, Davis AM, Lariviere JP, Hamilton JW (2001) Arsenic alters the function of the glucocorticoid receptor as a transcription factor. Environ Health Perspect 109:245–251

    CAS  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120

    CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26

    CAS  Google Scholar 

  • Katsoyiannis I, Zouboulis A, Althoff H, Bartel H (2002) As(III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere 47:325–332

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    CAS  Google Scholar 

  • Kosower NS, Newton GL, Kosower EM, Ranney HM (1980) Bimane fluorescent labels. Characterization of the bimane labeling of human hemoglobin. Biochim Biophys Acta 622:201–209

    CAS  Google Scholar 

  • Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    CAS  Google Scholar 

  • Kotze AA, Tuffin MI, Deane SM, Rawlings DY (2006) Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs. Microbiology 152:3551–3560

    CAS  Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    CAS  Google Scholar 

  • Kuroda M, Dey S, Sanders OI, Rosen BP (1997) Alternate energy coupling of ArsB, the membrane subunit of the Ars anion-translocating ATPase. J Biol Chem 272:326–331

    CAS  Google Scholar 

  • La Force MJ, Hansel CM, Fendorf S (2000) Arsenic speciation, seasonal transformations, and co-distribution with iron in a mine waste-influenced palustrine emergent wetland. Environ Sci Technol 34:3937–3943

    Google Scholar 

  • Laverman AM, Switzer Blum J, Schaefer JK, Philips EJP, Lovley DR, Oremland RS (1995) Growth of strain SE-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561

    CAS  Google Scholar 

  • Leonard A (1991) Arsenic. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 751–772

    Google Scholar 

  • Leslie EM, Haimeur A, Waalkes MP (2004) Arsenic transport by the human multi-drug resistance protein 1 (MRP1/ABCC1): evidence that a tri-glutathione conjugate is required. J Biol Chem 279:32700–32708

    CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    CAS  Google Scholar 

  • Leveau JHJ, Lindow SE (2002) Bioreporters in microbial ecology. Curr Opin Microbiol 5:259–265

    Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, FL, pp 165–185

    CAS  Google Scholar 

  • Li Y, Cockburn W, Kilpatrick J, Whitelam GC (2000) Cytoplasmic expression of a soluble synthetic mammalian metallothionein-alpha domain in Escherichia coli-enhanced tolerance and accumulation of cadmium. Mol Biotechnol 16:211–219

    Google Scholar 

  • Li R, Haile JD, Kennelly PJ (2003) An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. J Bacteriol 185:6780–6789

    CAS  Google Scholar 

  • Lieveremont D, Bertin PN, Lett MC (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237

    Google Scholar 

  • Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci U S A 103:15617–15622

    CAS  Google Scholar 

  • Lin YF, Yang J, Rosen BP (2007) ArsD Residues Cys12, Cys13, and Cys18 form an As(III)-binding site required for arsenic metallochaperone activity. J Biol Chem 282:16783–16791

    CAS  Google Scholar 

  • Liu J, Rosen BP (1997) Ligand interactions of the ArsC arsenate reductase. J Biol Chem 272:21084–21089

    CAS  Google Scholar 

  • Liu J, Chen H, Miller DS, Sauvedra JE, Keefer LK, Johnson DR, Klaassen CD, Waalkes MP (2001) Overexpression of glutathione s-transferase II and multi-drug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60:302–309

    CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99:6053–6058

    CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316:1178–1185

    CAS  Google Scholar 

  • Liu T, Golden JW, Giedroc DP (2005) A zinc(II)/lead(II)/cadmium(II)-inducible operon from the cyanobacterium Anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Biochemistry 44:8673–8683

    CAS  Google Scholar 

  • Lloyd JR, Lovley DR, Macaski LE (2003) Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128

    CAS  Google Scholar 

  • Lombi E, Wenzel WW, Adriano DC (2000) Arsenic-contaminated soils: II. Remedial action. In: Wise DL, Tarantolo DJ, Inyang HI, Cichon EJ (eds) Remedial of hazardous waste contaminated soils. Marcel Dekker, New York, pp 739–758

    Google Scholar 

  • Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    CAS  Google Scholar 

  • Lopez-Maury L, Florencio FJ, Reyes JC (2003) Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:5363–5371

    CAS  Google Scholar 

  • Luong JHT, Majid E, Male KB (2007) Analytical tools for monitoring arsenic in the environment. Open Anal Chem J 1:7–14

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    CAS  Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Cabrera F, Lopez R (2002) Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcollar mine spill (SW Spain). Sci Total Environ 290:105–120

    CAS  Google Scholar 

  • Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928

    CAS  Google Scholar 

  • Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BF (2001) Insights into the structure, salvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure 9:1071–1081

    CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    CAS  Google Scholar 

  • Mays DE, Hussam A (2009) Volumetric methods for determination and speciation of inorganic arsenic in the environment—a review. Anal Chim Acta 646:6–16

    CAS  Google Scholar 

  • Mazumdar DNG (2008) Chronic arsenic toxicity and human health. Indian J Med Res 128:436–447

    Google Scholar 

  • Mbeunkui F, Richaud C, Etienne AL, Schmid RD, Bachmann TT (2002) Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain. Appl Microbiol Biotechnol 60:306–312

    CAS  Google Scholar 

  • McBride BC, Wolfe RS (1971) Biosynthesis of dimethylasrine by a methanobacterium. Biochemistry 10:4312–4317

    CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Meng X, Korfiatis GP, Bang S, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111

    CAS  Google Scholar 

  • Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341

    CAS  Google Scholar 

  • Merrifield ME, Ngu T, Stillman MJ (2004) Arsenic binding to Fucus vesiculosus metallothionein. Biochem Biophys Res Commun 324:127–132

    CAS  Google Scholar 

  • Messens J, Hayburn G, Desmyter A, Laus G, Wyns L (1999) The essential catalytic redox couple in arsenate reductase from Staphylococcus aureus. Biochemistry 38:16857–16865

    CAS  Google Scholar 

  • Messens J, Martins JC, van Belle K, Brosens E, Desmyter A, De Gieter M, Wieruszeski JM, Willem R, Wyns L, Zegers I (2002) All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade. Proc Natl Acad Sci U S A 99:8506–8511

    CAS  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metalloids by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    CAS  Google Scholar 

  • Mitra SM, Guha Mazumder DN, Basu A, Block G, Haque R, Samanta S, Ghosh N, Smith MMH, von Ehrenstein OS, Smith AH (2004) Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environ Health Perspect 112:1104–1109

    CAS  Google Scholar 

  • Mohapatra D, Mishra D, Rout M, Chaudhury GR (2007) Adsorption kinetics of natural dissolved organic matter and its impact on arsenic(V) leachability from arsenic loaded ferrihydrite and Al-ferrihydrite. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:81–88

    CAS  Google Scholar 

  • Mohapatra D, Mishra D, Chaudhury GR, Das RP (2008) Removal of arsenic from arsenic rich sludge by volatilization using anaerobic microorganisms treated with cow dung. Soil Sediment Contam 17:301–311

    CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP (1998) Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett 168:127–136

    CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    CAS  Google Scholar 

  • Muller D, Médigue C, Koechler S et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:518–530

    CAS  Google Scholar 

  • Murase J, Kimura M (1997) Anaerobic reoxidation of Mn2+, Fe2+, S0 and S2− in submerged paddy soils. Biol Fertil Soils 25:302–306

    CAS  Google Scholar 

  • Nagvenkar GS, Ramaiah N (2010) Arsenite tolerance and biotransformation potential in estuarine bacteria. Ecotoxicology 19:604–613

    CAS  Google Scholar 

  • Ng JC, Wang JP, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    CAS  Google Scholar 

  • Ordonez E, Letek M, Valbuena N, Gil AJ, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215

    CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    CAS  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–48

    CAS  Google Scholar 

  • Oremland RS, Dowdle PR, Hoeft S, Sharp JO, Schaefer JK, Miller LG, Switzer Blum J, Smith RL, Bloom NS, Wallschlaeger D (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochim Cosmochim Acta 64:3073–3084

    CAS  Google Scholar 

  • Osman D, Cavet JS (2010) Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. Nat Prod Rep 27:668–680

    CAS  Google Scholar 

  • Paez-Espino D, Tamales J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    CAS  Google Scholar 

  • Pantsar-Kallio M, Korpela A (2000) Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas-chromatography-mass spectrometry. Anal Chim Acta 410:65–70

    CAS  Google Scholar 

  • Pennisi E (2010) What poison? Bacterium uses arsenic to build DNA and other molecules. Science 330:1302

    CAS  Google Scholar 

  • Petänen T, Virta M, Karp M, Romantschuk M (2001) Construction and use broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb Ecol 41:360–368

    Google Scholar 

  • Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2004) Arsenic and selenium. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 9, Environmental geochemistry. Elsevier, Amsterdam, pp 17–66

    Google Scholar 

  • Polemio M, Senesi N, Bufo SA (1982) Soil contamination by metals. A survey in industrial and rural areas of Southern Italy. Sci Total Environ 25:71–79

    CAS  Google Scholar 

  • Pongratz W, Endler PC, Poitevin B, Kartnig T (1995) Effect of extremely diluted plant hormone on cell culture. Proc AAAS Ann Meeting, Atlanta

    Google Scholar 

  • Porta D, Bullerjahn GS, Durham KA, Wilhelm SW, Twiss MR, McKay RML (2003) Physiological characterization of a Synechococcus sp. (cyanophyceae) strain PCC7942 iron-dependent bioreporter for freshwater environments. J Phycol 39:64–73

    CAS  Google Scholar 

  • Purkayastha TJ (2011) Microbial remediation of arsenic contaminated soil. In: Sherrameti I, Varma A (eds) Detoxification of heavy metals, vol 30, Soil biology. Springer, Berlin, Heidelberg, pp 221–260

    Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    CAS  Google Scholar 

  • Qin XS, GH Huang, Chakma A, Chen B, Zeng GM (2007) Simulation-based process optimization for surfactant - enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites. Sci Total Environ 381:17–37

    Google Scholar 

  • Rahmann MM, Chowdhury UK, Mukherjee SC, Mandal BK, Paul K, Lodh D, Biswas BK, Chanda CR, Basu GK, Saha KC, Roy S, Das R, Palit SK, Quamruzzaman Q, Chakraborti D (2001) Chronic arsenic toxicity in Bangladesh in West Bengal, India—a review commentary. J Toxicol Clin Toxicol 39:683–700

    Google Scholar 

  • Rensing C, Rosen B (2009) Heavy metals cycle (arsenic, mercury, selenium, others). In: Schaeter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 205–219

    Google Scholar 

  • Rensing C, Ghosh M, Rosen B (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    CAS  Google Scholar 

  • Roberto F, Barnes J, Bruhn D (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58:181–188

    CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    CAS  Google Scholar 

  • Roos G, Loverix S, Brosens E, Van Belle K, Wyns L, Geerlings P, Messens J (2006) The activation of electrophile, nucleophile and leaving group during the reaction catalysed by pI258 arsenate reductase. Chembiochem 7:981–989

    CAS  Google Scholar 

  • Rosen BP (1996) Bacterial resistance to heavy metals. J Biol Inorg Chem 1:273–277

    CAS  Google Scholar 

  • Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212

    CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    CAS  Google Scholar 

  • Rosen BP, Weigel U, Karkaria C, Gangola P (1988) Molecular characterization of an anion pump. The arsA gene product is an arsenite (antimonate)-stimulated ATPase. J Biol Chem 263:3067–3070

    CAS  Google Scholar 

  • Rosenberg HR, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in E. coli. J Bacteriol 131:505–511

    CAS  Google Scholar 

  • Rosenzweig AC (2002) Metallochaperones: bind and deliver. Chem Biol 9:673–677

    CAS  Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. Wiley, Chichester, UK

    Google Scholar 

  • Rowland HAL, Pederick RL, Polya DA, Pancost RD, van Dongen BE, Gault AG, Vaughan DJ, Bryant C, Anderson B, Lloyd JR (2007) The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 5:281–292

    CAS  Google Scholar 

  • Ruan X, Bhattacharjee H, Rosen BP (2006) Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase. J Biol Chem 281:9925–9934

    CAS  Google Scholar 

  • Russeva E (1995) Speciation analysis—peculiarities and requirements. Anal Lab 4:143–148

    CAS  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    CAS  Google Scholar 

  • Saunders JA, Lee MK, Uddin A, Mohammed S, Wilkin RT, Fayek M, Korte NE (2005) Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochem Geophys Geosyst 6:1–7

    Google Scholar 

  • Senn DB, Hemond HF (2004) Particulate arsenic and iron during anoxia in a eutrophic, urban lake. Environ Toxicol Chem 23:1610–1616

    CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334

    CAS  Google Scholar 

  • Shi W, Wu J, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829

    CAS  Google Scholar 

  • Shi W, Dong J, Scott RA, Ksenzenko MY, Rosen BP (1996) The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem 271:9291–9297

    CAS  Google Scholar 

  • Silver S, Keach D (1982) Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc Natl Acad Sci U S A 79:6114–6118

    CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    CAS  Google Scholar 

  • Silver S, Budd K, Leahy KM, Shaw WV, Hammond D, Novick RP, Willsky GR, Malamy MH, Rosenberg H (1981) Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in Escherichia coli and Staphylococcus aureus. J Bacteriol 146:983–996

    CAS  Google Scholar 

  • Singh N, Ma LQ (2006) Arsenic speciation and arsenic phosphate distribution in arsenic hyperaccumulation Pteris vittata (L) and non-hyperaccumulator Pteris ensiformis (L). Environ Pollut 141:238–246

    CAS  Google Scholar 

  • Singh S, Lee W, DaSilva NA, Mulchandani A, Chen W (2008a) Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol Bioeng 99:333–340

    CAS  Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008b) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927

    CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    CAS  Google Scholar 

  • Sohrin Y, Matsui M, Kawashima M, Hojo M, Hasegawa H (1997) Arsenic biogeochemistry affected by eutrophication in lake Biwa, Japan. Environ Sci Technol 31:2712–2720

    CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    CAS  Google Scholar 

  • Sticher P, Jaspers MCM, Stemmler K, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060

    CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    CAS  Google Scholar 

  • Strosnider H (2003) Whole-cell bacterial biosensors and the detection of bioavailable arsenic. Office of solid waste and emergency response technology innovation Environmental Protection Agency, Washington DC

    Google Scholar 

  • Sun Y, Wong MD, Rosen BP (2001) Role of cysteinyl residues in sensing Pb(II), Cd(II), and Zn(II) by the plasmid pI258 CadC repressor. J Biol Chem 276:14955–14960

    CAS  Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Onoc Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127:434–442

    CAS  Google Scholar 

  • Tauriainen S, Karp M, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461

    CAS  Google Scholar 

  • Taurianen S, Virta M, Chang W, Karp M (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenate and mercury sensors. Anal Biochem 272:191–198

    Google Scholar 

  • Tisa LS, Rosen BP (1990) Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem 265:190–194

    CAS  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    CAS  Google Scholar 

  • Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:1–9

    Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator chinese brake fern (Pteris vittata L.) and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    CAS  Google Scholar 

  • Tu S, Ma LQ, MacDonald GE, Bondada B (2003) Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51:121–131

    CAS  Google Scholar 

  • Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytoremediation 6:35–47

    CAS  Google Scholar 

  • Tuffin IM, Hector SB, Deane SM, Rawling DE (2006) Resistance determinants of highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253

    CAS  Google Scholar 

  • Turpeinen R (2002) Interactions between metals, microbes and plants: bioremediation of arsenic and lead contaminated soils. A dissertation in environmental ecology, Faculty of Science, University of Helsinki, Neopoli, Lahti

    Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Haggblom M, Kairesalo T (1999) Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci Total Environ 236:173–180

    CAS  Google Scholar 

  • Turpeinen R, Virta M, Haggblom M (2003) Analysis of arsenic bioavailability in contaminated soils. Environ Toxicol Chem 22:1–6

    CAS  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal. Nat Rev Microbiol 7:25–35

    CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. J Hazard Mater B138:459–470

    Google Scholar 

  • Wang L, Chen S, Xiao X, Huang X, You D, Zhou X, Deng Z (2006) arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Appl Environ Microbiol 72:3738–3742

    CAS  Google Scholar 

  • Welch AH, Lico MS (1998) Factors controlling As and U in shallow ground water, southern Carson Dessert, Nevada. Appl Geochem 13:521–539

    CAS  Google Scholar 

  • WHO (2001) Arsenic in drinking water, Fact sheet No. 210, Revised Edition (http://www.who.int/mediacentre/factsheet/fs21)

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davis PCW, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166

    CAS  Google Scholar 

  • Woolson EA (1977) Generation of alkylarsines from soil. Weed Sci 25:412–416

    CAS  Google Scholar 

  • Wu J, Tisa LS, Rosen BP (1992) Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J Biol Chem 267:12570–12576

    CAS  Google Scholar 

  • Wu B, Song J, Beitz E (2010) Novel channel enzyme fusion proteins confer arsenate resistance. J Biol Chem 285:40081–40087

    CAS  Google Scholar 

  • Wuilloud RG, Altamirano JC, Smichowski PC, Heitkemper DT (2006) Investigation of arsenic speciation in algae of the Antarctic region by HPLC-ICP-MS and HPLC-ESI-Ion Trap MS. J Anal At Spectrom 21:1214–1223

    CAS  Google Scholar 

  • Xu C, Shi W, Rosen BP (1996) The chromosomal arsR gene of E. coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271:2427–2432

    CAS  Google Scholar 

  • Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997

    CAS  Google Scholar 

  • Yang J, Rawat S, Stemmler TL, Rosen BP (2010) Arsenic binding and transfer by the ArsD As(III) metallochaperone. Biochemistry 49:3658–3666

    CAS  Google Scholar 

  • Zawadzka AM, Crawford RL, Paszczynski AJ (2007) Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic. Biometals 20:145–158

    CAS  Google Scholar 

  • Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Arsenate reductase from S. Aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8:843–847

    CAS  Google Scholar 

  • Zhou T, Rosen BP (1997) Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J Biol Chem 272:19731–19737

    CAS  Google Scholar 

  • Zhou T, Radaev S, Rosen BP, Gatti DL (2000) Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 19:1–8

    CAS  Google Scholar 

  • Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem 279:37445–37451

    CAS  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of arsenate. Environ Sci Technol 34:4747–4753

    CAS  Google Scholar 

  • Zuber P (2004) Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 186:1911–1918

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhuldhaj, U.P., Yadav, I.C., Singh, S., Sharma, N.K. (2013). Microbial Interactions in the Arsenic Cycle: Adoptive Strategies and Applications in Environmental Management. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 224. Reviews of Environmental Contamination and Toxicology, vol 224. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5882-1_1

Download citation

Publish with us

Policies and ethics