Skip to main content

Vascular Stem Cells in Regulation of Angiogenesis

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Angiogenesis is the process by which new vessels are generated from the preexisting blood vessels, which is the major contributor of postnatal neovascularization process. Disruption or dysregulation of angiogenesis is involved in various pathological conditions, such as ischemia and tumor progression. Stimulation of angiogenesis was proposed to be able to restore the blood flow and contribute to the tissue recovery in ischemia, while inhibition of angiogenesis can impede tumor progression. The importance of angiogenesis has generated tremendous interest in studying the mechanisms and to find out major contributors of the process. The current stem cell research has significantly improved our understanding of angiogenesis and its possible therapeutic application. Hypoxia is the most important driving force of angiogenesis, while other factors, such as chemokines and cytokines, haptotaxis, and mechanotaxis, are also important in regulating neovascularization process. In this chapter, we will focus on the progenitor cells that contribute to the angiogenesis and the underlining mechanisms involved in this process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15

    Article  PubMed  CAS  Google Scholar 

  2. Halperin JL (2002) Evaluation of patients with peripheral vascular disease. Thromb Res 106:V303–V311

    Article  PubMed  CAS  Google Scholar 

  3. Lee JS, Hong JM, Moon GJ et al (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106

    Article  PubMed  Google Scholar 

  4. Kwon SM, Lee YK, Yokoyama A et al (2011) Differential activity of bone marrow hematopoietic stem cell subpopulations for EPC development and ischemic neovascularization. J Mol Cell Cardiol 51:308–317

    Article  PubMed  CAS  Google Scholar 

  5. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  6. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  7. Kovacic JC, Moore J, Herbert A et al (2008) Endothelial progenitor cells, angioblasts, and angiogenesis—old terms reconsidered from a current perspective. Trends Cardiovasc Med 18:45–51

    Article  PubMed  CAS  Google Scholar 

  8. Hattori K, Dias S, Heissig B et al (2001) Vascular endothelial growth factor and angiopoietin-­1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193:1005–1014

    Article  PubMed  CAS  Google Scholar 

  9. Rajantie I, Ilmonen M, Alminaite A et al (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086

    Article  PubMed  CAS  Google Scholar 

  10. Hur J, Yoon CH, Kim HS et al (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  PubMed  CAS  Google Scholar 

  11. Vogeli KM, Jin SW, Martin GR, Stainier DY (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443:337–339

    Article  PubMed  CAS  Google Scholar 

  12. Takakura N, Watanabe T, Suenobu S et al (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102:199–209

    Article  PubMed  CAS  Google Scholar 

  13. Melero-Martin JM, De Obaldia ME, Allen P et al (2010) Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo. Tissue Eng Part A 16:2457–2466

    Article  PubMed  CAS  Google Scholar 

  14. Jin DK, Shido K, Kopp HG et al (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4(+) hemangiocytes. Nat Med 12:557–567

    Article  PubMed  CAS  Google Scholar 

  15. Melero-Martin JM, Dudley AC (2011) Concise review: vascular stem cells and tumor angiogenesis. Stem Cells 29:163–168

    Article  PubMed  CAS  Google Scholar 

  16. Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558

    Article  PubMed  CAS  Google Scholar 

  17. Sanz L, Santos-Valle P, Alonso-Camino V et al (2008) Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 75:308–314

    Article  PubMed  Google Scholar 

  18. Kim SW, Kim H, Yoon YS (2011) Advances in bone marrow-derived cell therapy: CD31-­expressing cells as next generation cardiovascular cell therapy. Regen Med 6:335–349

    Article  PubMed  CAS  Google Scholar 

  19. Nih LR, Deroide N, Lere-Dean C et al (2012) Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration. Eur J Neurosci 35:1208–1217

    Article  PubMed  Google Scholar 

  20. Pardali E, ten Dijke P (2009) Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci 14:4848–4861

    Article  PubMed  CAS  Google Scholar 

  21. Okuda Y, Tsurumaru K, Suzuki S et al (1998) Hypoxia and endothelin-1 induce VEGF production in human vascular smooth muscle cells. Life Sci 63:477–484

    Article  PubMed  CAS  Google Scholar 

  22. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  23. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  PubMed  CAS  Google Scholar 

  24. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    Article  PubMed  CAS  Google Scholar 

  25. Brogi E, Schatteman G, Wu T et al (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 97:469–476

    Article  PubMed  CAS  Google Scholar 

  26. Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 25:891–897

    Article  PubMed  CAS  Google Scholar 

  27. Barleon B, Siemeister G, Martiny-Baron G et al (1997) Vascular endothelial growth factor up-­regulates its receptor fms-like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res 57:5421–5425

    PubMed  CAS  Google Scholar 

  28. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  29. Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  30. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    Article  PubMed  CAS  Google Scholar 

  31. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560

    Article  PubMed  CAS  Google Scholar 

  32. Mukouyama YS, Gerber HP, Ferrara N et al (2005) Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132:941–952

    Article  PubMed  CAS  Google Scholar 

  33. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    Article  PubMed  CAS  Google Scholar 

  34. Matsui M, Tabata Y (2012) Enhanced angiogenesis by multiple release of platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogels. Acta Biomater 8:1792–1801

    Article  PubMed  CAS  Google Scholar 

  35. Hildbrand P, Cirulli V, Prinsen RC et al (2004) The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood 104:2010–2019

    Article  PubMed  CAS  Google Scholar 

  36. Iurlaro M, Scatena M, Zhu WH et al (2003) Rat aorta-derived mural precursor cells express the Tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci 116:3635–3643

    Article  PubMed  CAS  Google Scholar 

  37. Zhu G, Huang L, Song M et al (2010) Over-expression of hepatocyte growth factor in smooth muscle cells regulates endothelial progenitor cells differentiation, migration and proliferation. Int J Cardiol 138:70–80

    Article  PubMed  Google Scholar 

  38. Schroder K, Schutz S, Schloffel I et al (2011) Hepatocyte growth factor induces a proangiogenic phenotype and mobilizes endothelial progenitor cells by activating Nox2. Antioxid Redox Signal 15:915–923

    Article  PubMed  Google Scholar 

  39. Yang ZJ, Ma DC, Wang W et al (2006) Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-­relative artery in acute myocardial infarction. Gene Ther 13:1564–1568

    Article  PubMed  CAS  Google Scholar 

  40. Salcedo R, Resau JH, Halverson D et al (2000) Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J 14:2055–2064

    Article  PubMed  CAS  Google Scholar 

  41. Addison CL, Daniel TO, Burdick MD et al (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165:5269–5277

    PubMed  CAS  Google Scholar 

  42. Devalaraja RM, Nanney LB, Du J et al (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115:234–244

    Article  PubMed  CAS  Google Scholar 

  43. Schraufstatter IU, Chung J, Burger M (2001) IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol 280:L1094–L1103

    PubMed  CAS  Google Scholar 

  44. Salcedo R, Wasserman K, Young HA et al (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135

    Article  PubMed  CAS  Google Scholar 

  45. Real C, Caiado F, Dias S (2008) Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do? Cardiovasc Hematol Disord Drug Targets 8:185–193

    Article  PubMed  CAS  Google Scholar 

  46. Chavakis E, Aicher A, Heeschen C et al (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201:63–72

    Article  PubMed  CAS  Google Scholar 

  47. Jin H, Su J, Garmy-Susini B et al (2006) Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res 66:2146–2152

    Article  PubMed  CAS  Google Scholar 

  48. Qin G, Ii M, Silver M et al (2006) Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. J Exp Med 203:153–163

    Article  PubMed  CAS  Google Scholar 

  49. Chavakis E, Hain A, Vinci M et al (2007) High-mobility group box 1 activates integrin-­dependent homing of endothelial progenitor cells. Circ Res 100:204–212

    Article  PubMed  CAS  Google Scholar 

  50. Carmona G, Chavakis E, Koehl U et al (2008) Activation of Epac stimulates integrin-­dependent homing of progenitor cells. Blood 111:2640–2646

    Article  PubMed  CAS  Google Scholar 

  51. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96:1110–1126

    Article  PubMed  CAS  Google Scholar 

  52. Noria S, Cowan DB, Gotlieb AI, Langille BL (1999) Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ Res 85:504–514

    Article  PubMed  CAS  Google Scholar 

  53. Albuquerque ML, Waters CM, Savla U et al (2000) Shear stress enhances human endothelial cell wound closure in vitro. Am J Physiol Heart Circ Physiol 279:H293–H302

    PubMed  CAS  Google Scholar 

  54. Azuma N, Akasaka N, Kito H et al (2001) Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am J Physiol Heart Circ Physiol 280:H189–H197

    PubMed  CAS  Google Scholar 

  55. Birukov KG, Birukova AA, Dudek SM et al (2002) Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am J Respir Cell Mol Biol 26:453–464

    PubMed  CAS  Google Scholar 

  56. Wojciak-Stothard B, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 161:429–439

    Article  PubMed  CAS  Google Scholar 

  57. Ramirez-Bergeron DL, Runge A, Dahl KDC et al (2004) Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development 131:4623–4634

    Article  PubMed  CAS  Google Scholar 

  58. Du R, Lu KV, Petritsch C et al (2008) HIF1 alpha induces the recruitment of bone marrow-­derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  PubMed  CAS  Google Scholar 

  59. Abdollahi H, Harris LJ, Zhang P et al (2011) The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res 165:112–117

    Article  PubMed  CAS  Google Scholar 

  60. Thangarajah H, Vial IN, Chang E et al (2009) IFATS collection: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia. Stem Cells 27:266–274

    Article  PubMed  CAS  Google Scholar 

  61. Cao Y, Sun Z, Liao L et al (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332:370–379

    Article  PubMed  CAS  Google Scholar 

  62. Weidemann A, Johnson RS (2008) Biology of HIF-1alpha. Cell Death Differ 15:621–627

    Article  PubMed  CAS  Google Scholar 

  63. Radtke F, Wilson A, Mancini SJ, MacDonald HR (2004) Notch regulation of lymphocyte development and function. Nat Immunol 5:247–253

    Article  PubMed  CAS  Google Scholar 

  64. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    Article  PubMed  CAS  Google Scholar 

  65. Fischer A, Schumacher N, Maier M et al (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911

    Article  PubMed  CAS  Google Scholar 

  66. Liu ZJ, Xiao M, Balint K et al (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J 20:1009–1011

    Article  PubMed  CAS  Google Scholar 

  67. Pola R, Ling LE, Silver M et al (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711

    Article  PubMed  CAS  Google Scholar 

  68. Kanda S, Mochizuki Y, Suematsu T et al (2003) Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J Biol Chem 278:8244–8249

    Article  PubMed  CAS  Google Scholar 

  69. Hochman E, Castiel A, Jacob-Hirsch J et al (2006) Molecular pathways regulating pro-­migratory effects of Hedgehog signaling. J Biol Chem 281:33860–33870

    Article  PubMed  CAS  Google Scholar 

  70. Asai J, Takenaka H, Kusano KF et al (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113:2413–2424

    Article  PubMed  CAS  Google Scholar 

  71. Nicoli S, Standley C, Walker P et al (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464:1196–1200

    Article  PubMed  CAS  Google Scholar 

  72. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100:1164–1173

    Article  PubMed  CAS  Google Scholar 

  73. Suarez Y, Fernandez-Hernando C, Yu J et al (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A 105:14082–14087

    Article  PubMed  CAS  Google Scholar 

  74. Howard L, Kane NM, Milligan G, Baker AH (2011) MicroRNAs regulating cell pluripotency and vascular differentiation. Vascul Pharmacol 55:69–78

    Article  PubMed  CAS  Google Scholar 

  75. Tongers J, Roncalli JG, Losordo DW (2010) Role of endothelial progenitor cells during ischemia-­induced vasculogenesis and collateral formation. Microvasc Res 79:200–206

    Article  PubMed  CAS  Google Scholar 

  76. Shumiya T, Shibata R, Shimizu Y et al (2010) Evidence for the therapeutic potential of ex vivo expanded human endothelial progenitor cells using autologous serum. Circ J 74:1006–1013

    Article  PubMed  CAS  Google Scholar 

  77. Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7:204–215

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grants, K01 AR054114 (NIAMS), SBIR R44 HL092706-01 (NHLBI), R21 CA143787 (NCI), Pelotonia idea award and the Ohio State University start-up fund for stem cell research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmoy Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, J., Pompili, V.J., Das, H. (2013). Vascular Stem Cells in Regulation of Angiogenesis. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_8

Download citation

Publish with us

Policies and ethics