Skip to main content

Role of Mast Cells in Angiogenesis

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Angiogenesis is a process that leads to the development of a new vascular network starting from pre-existing capillaries and venules. Mast cells (MCs) are tissue resident cells which actively participate in the angiogenic scenario, playing an important role in normal angiogenesis, angiogenesis that accompanies inflammation and tumour-associated angiogenesis. This chapter will focus on the specific role of MCs in the different types of angiogenic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrlich P (1878) Beiträge zur Theorie und Praxis der histologiscen Färbung. Thesis, Leipzig University, Leipzig

    Google Scholar 

  2. Crivellato E, Nico B, Vacca A, Ribatti D (2003) Ultrastructural analysis of mast cell recovery after secretion by piecemeal degranulation in B-cell non-Hodgkin’s lymphoma. Leuk Lymphoma 44:517–521

    Article  PubMed  CAS  Google Scholar 

  3. Crivellato E, Beltrami CA, Mallardi F, Ribatti D (2004) The mast cell: an active participant or an innocent bystander? Histol Histopathol 19:259–270

    PubMed  CAS  Google Scholar 

  4. Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11:53–59

    Article  PubMed  CAS  Google Scholar 

  5. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  PubMed  CAS  Google Scholar 

  6. Ribatti D, Crivellato E (2012) Mast cells, angiogenesis and tumour growth. Biochim Biophys Acta 1822:2–8

    Article  PubMed  CAS  Google Scholar 

  7. Saito H (2005) Role of mast cell proteases in tissue remodeling. Chem Immunol Allergy 87:80–84

    Article  PubMed  CAS  Google Scholar 

  8. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  9. Ribatti D (2006) Genetic and epigenetic mechanisms in the early development of the vascular system. J Anat 208:139–152

    Article  PubMed  CAS  Google Scholar 

  10. Burri P, Djonov D (2002) Intussusceptive angiogenesis. The alternative to capillary sprouting. Mol Aspects Med 23:1–27

    Article  Google Scholar 

  11. Gurish MF, Austen KF (2001) The diverse role of mast cells. J Exp Med 194:1–5

    Article  Google Scholar 

  12. Kitamura Y, Ito A (2005) Mast cell-committed progenitors. Proc Natl Acad Sci U S A 102:11129–11130

    Article  PubMed  CAS  Google Scholar 

  13. Ochi H, Hirani WM, Yuan Q et al (1999) T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J Exp Med 190:267–280

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez S, Moran M, Kochevar IE (1999) Chronic photodamage in skin of mast cell-­deficient mice. Photochem Photobiol 70:248–253

    Article  PubMed  CAS  Google Scholar 

  15. Weller K, Foitzik K, Paus R et al (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20:2366–2368

    Article  PubMed  CAS  Google Scholar 

  16. Grimbaldeston MA, Nakae S, Kalesnikoff K et al (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 38:1095–1104

    Article  Google Scholar 

  17. Qu Z, Lieber JM, Powers MR et al (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147:564–573

    PubMed  CAS  Google Scholar 

  18. Qu Z, Kayton RJ, Ahmadi P et al (1998) Ultrastructural immunolocalization of basic fibroblast growth factor in mast cell secretory granules: morphological evidence for bFGF release through degranulation. J Histochem Cytochem 46:1119–1128

    Article  PubMed  CAS  Google Scholar 

  19. Grutzkau A, Kruger-Krasagakes S, Baumesteir H et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF 206. Mol Biol Cell 9:875–884

    PubMed  CAS  Google Scholar 

  20. Abdel-Majid RM, Marshall JS (2004) Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J Immunol 172:1227–1236

    PubMed  CAS  Google Scholar 

  21. Boesiger J, Tsai M, Maurer M et al (1998) Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcε receptor I expression. J Exp Med 188:1135–1145

    Article  PubMed  CAS  Google Scholar 

  22. Kanbe N, Kurosawa M, Nagata H et al (2000) Production of fibrogenic cytokines by cord blood-derived cultured human mast cells. J Allergy Clin Immunol 106:S85–S90

    Article  PubMed  CAS  Google Scholar 

  23. Detmar M, Brown LF, Schon MP et al (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 11:1–6

    Article  Google Scholar 

  24. Gruber BL, Marchese MJ, Kaw R (1995) Angiogenic factors stimulate mast cell migration. Blood 86:2488–2493

    PubMed  CAS  Google Scholar 

  25. Ribatti D, Crivellato E, Candussio L et al (2001) Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy 31:602–608

    Article  PubMed  CAS  Google Scholar 

  26. Norrby K, Jakobsson A, Sörbo J (1986) Mast-cell-mediated angiogenesis: a novel experimental model using the rat mesentery. Virchows Arch B Cell Pathol Incl Mol Pathol 52:195–206

    Article  PubMed  CAS  Google Scholar 

  27. Blair RJ, Meng H, Marchese MJ et al (1997) Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 99:2691–2700

    Article  PubMed  CAS  Google Scholar 

  28. Azizkhan RG, Azizkhan JC, Zetter BR, Folkman J (1980) Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med 152:931–944

    Article  PubMed  CAS  Google Scholar 

  29. Ribatti D, Roncali L, Nico B, Bertossi M (1987) Effects of exogenous heparin on the vasculogenesis of the chorioallantoic membrane. Acta Anat (Basel) 130:257–263

    Article  CAS  Google Scholar 

  30. Sörbo J, Jakobsson A, Norrby K (1994) Mast cell histamine is angiogenic through receptors for histamine 1 and histamine 2. Int J Exp Pathol 75:43–50

    PubMed  Google Scholar 

  31. Möller A, Lippert U, Lessmann D et al (1993) Human mast cells produce IL-8. J Immunol 151:3261–3266

    PubMed  Google Scholar 

  32. Walsh LJ, Trinchieri G, Waldorf HA, Whiraker D, Murphy GF (2001) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci U S A 88:4220–4224

    Article  Google Scholar 

  33. Nilsson G, Forsberg-Nilsson K, Xiang Z et al (1997) Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol 27:2295–2301

    Article  PubMed  CAS  Google Scholar 

  34. Nakayama T, Mutsuga N, Yao L, Tosato G (2006) Prostaglandin E2 promotes degranulation-­independent release of MCP-1 from mast cells. J Leukoc Biol 79:95–104

    Article  PubMed  CAS  Google Scholar 

  35. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  PubMed  CAS  Google Scholar 

  36. Crivellato E, Nico B, Ribatti D (2007) Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 211:415–427

    PubMed  CAS  Google Scholar 

  37. Ribatti D, Vacca A, Nico B, Roncali L, Dammacco F (2001) Postnatal vasculogenesis. Mech Dev 100:157–163

    Article  PubMed  CAS  Google Scholar 

  38. Ribatti D, Nico B, Crivellato E (2009) Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 12:101–111

    Article  PubMed  CAS  Google Scholar 

  39. Szukiewicz D, Pyzlak M, Klimkiewicz J, Szewczyk G, Maslinska D (2007) Mast cell-derived interleukin-8 may be involved in the ovarian mechanisms of follicle growth and ovulation. Inflamm Res 56:S35–S36

    Article  PubMed  CAS  Google Scholar 

  40. Szelag A, Merwid-Lad A, Troche M (2002) Histamine receptors in the female reproductive system. Part I. Role of the mast cells and histamine in female reproductive system. Ginekol Pol 73:627–635

    PubMed  Google Scholar 

  41. Jensen F, Woudwyk M, Teles A et al (2010) Estradiol and progesterone regulate the migration of mast cells from the periphery to the uterus and induce their maturation and degranulation. PLoS One 5:e14409

    Article  PubMed  CAS  Google Scholar 

  42. Eklund KK (2007) Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev 217:38–52

    Article  PubMed  CAS  Google Scholar 

  43. Ren G, Dewald O, Frangogiannis NG (2003) Inflammatory mechanisms in myocardial infarction. Curr Drug Targets Inflamm Allergy 2:242–256

    Article  PubMed  CAS  Google Scholar 

  44. Aroni K, Tsagroni E, Kavantzas N, Patsouris E, Ioannidis E (2008) A study of the pathogenesis of rosacea: how angiogenesis and mast cells may participate in a complex multifactorial process. Arch Dermatol Res 300:125–131

    Article  PubMed  Google Scholar 

  45. Groneberg DA, Bester C, Grützkau A et al (2005) Mast cells and vasculature in atopic dermatitis. Potential stimulus of neoangiogenesis. Allergy 60:90–97

    Article  PubMed  CAS  Google Scholar 

  46. Li X, Wilson JM (1997) Increased vascularity of the bronchial mucosa in mild asthma. Am J Respir Crit Care Med 156:229–233

    PubMed  CAS  Google Scholar 

  47. Orsida BE, Li X, Hickey B et al (1999) Vascularity in asthmatic airways: relation to inhaled steroid dose. Thorax 54:289–295

    Article  PubMed  CAS  Google Scholar 

  48. Wilson J (2000) The bronchial microcirculation in asthma. Clin Exp Allergy 30:51–53

    Article  PubMed  Google Scholar 

  49. Holgate ST (2002) Airway inflammation and remodeling in asthma: current concepts. Mol Biotechnol 22:179–189

    Article  PubMed  CAS  Google Scholar 

  50. Hiromatsu Y, Toda S (2003) Mast cells and angiogenesis. Microsc Res Tech 60:64–69

    Article  PubMed  Google Scholar 

  51. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  52. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  53. Ribatti D, Nico B, Crivellato E, Vacca A (2007) The structure of the vascular network in tumors. Cancer Lett 248:18–23

    Article  PubMed  CAS  Google Scholar 

  54. Kessler DA, Langer RS, Pless NA, Folkman J (1976) Mast cells and tumor angiogenesis. Int J Cancer 18:703–709

    Article  PubMed  CAS  Google Scholar 

  55. Conti P, Pang X, Boucher W et al (1997) Impact of Rantes and MCP-1 chemokines on in vivo basohilic mast cell recruitment in rat skin injection model and their role in modifying the protein and mRNA levels for histidine decarboxylase. Blood 89:4120–4127

    PubMed  CAS  Google Scholar 

  56. Theoharides T, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25:235–241

    Article  PubMed  CAS  Google Scholar 

  57. Starkey JR, Crowle PK, Taubenberger S (1998) Mast cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42:48–52

    Article  Google Scholar 

  58. Benitez-Bribiesca L, Wong A, Utrera D, Castellanos E (2001) The role of mast cell tryptase in neoangiogenesis of premalignant and malignant lesions of the uterine cervix. J Histochem Cytochem 49:1061–1062

    Article  PubMed  CAS  Google Scholar 

  59. Sawatsubashi M, Yamada T, Fukushima N et al (2000) Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch 436:243–248

    Article  PubMed  CAS  Google Scholar 

  60. Imada D, Shijubo N, Kojima H, Abe S (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15:1087–1093

    Article  PubMed  CAS  Google Scholar 

  61. Takanami I, Takeuchi K, Narume M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88:2686–2692

    Article  PubMed  CAS  Google Scholar 

  62. Tomita M, Matsuzaki Y, Onitsuka T (2000) Effect of mast cell on tumor angiogenesis in lung cancer. Ann Thorac Surg 69:1686–1690

    Article  PubMed  CAS  Google Scholar 

  63. Ribatti D, Ennas MG, Vacca A et al (2003) Tumor vascularity and tryptase positive-mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest 33:420–425

    Article  PubMed  CAS  Google Scholar 

  64. Toth T, Toth-Jakatics R, Jimi S, Takebayashi S, Kawamoto N (2000) Cutaneous malignant melanoma: correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Hum Pathol 31:955–960

    Article  Google Scholar 

  65. Ribatti D, Vacca A, Ria R et al (2003) Neovascularization, expression of fibroblast growth factor-­2, and mast cell with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 39:666–675

    Article  PubMed  CAS  Google Scholar 

  66. Elpek GO, Gelen T, Aksoy NH et al (2001) The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J Clin Pathol 54:940–944

    Article  PubMed  CAS  Google Scholar 

  67. Ribatti D, Finato N, Crivellato E et al (2005) Neovascularization and mast cells with tryptase activity increase simultaneously with pathologic progression in human endometrial cancer. Am J Obstet Gynecol 193:1961–1965

    Article  PubMed  CAS  Google Scholar 

  68. Ribatti D, Vacca A, Marzullo A et al (2000) Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas. Int J Cancer 82:171–175

    Article  Google Scholar 

  69. Fukushima N, Satoh T, Sano M, Tokunaga O (2001) Angiogenesis and mast cells in non-­Hodgkin’s lymphoma: strong correlation in angioimmunoblastic T-cell lymphoma. Leuk Lymphoma 42:709–720

    Article  PubMed  CAS  Google Scholar 

  70. Ribatti D, Vacca A, Nico B et al (1999) Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 79:451–455

    Article  PubMed  CAS  Google Scholar 

  71. Ribatti D, Polimero G, Vacca A et al (2002) Correlation of bone marrow angiogenesis and mast cells with tryptase activity in myelodysplastic syndromes. Leukemia 16:1680–1684

    Article  PubMed  CAS  Google Scholar 

  72. Ribatti D, Molica S, Vacca A et al (2003) Tryptase-positive mast cells correlate positively with bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia 17:1428–1430

    Article  PubMed  CAS  Google Scholar 

  73. Molica S, Vacca A, Crivellato E, Cuneo A, Ribatti D (2003) Tryptase-positive mast cells predict clinical outcome of patients with early B-cell chronic lymphocytic leukemia. Eur J Haematol 71:137–139

    Article  PubMed  Google Scholar 

  74. Crivellato E, Nico B, Vacca A, Dammacco F, Ribatti D (2002) Mast cell heterogeneity in B-cell non-Hodgkin’s lymphomas: an ultrastructural study. Leuk Lymphoma 43:2201–2205

    Article  PubMed  Google Scholar 

  75. Crivellato E, Beltrami C, Mallardi F, Ribatti D (2003) Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 123:19–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by European Union Seventh Framework Programme (FPT7/2007-2013) under grant agreement no. 278570 to DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crivellato, E., Ribatti, D. (2013). Role of Mast Cells in Angiogenesis. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_7

Download citation

Publish with us

Policies and ethics