Skip to main content

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Intensive research on molecular mechanisms responsible for tumor angiogenesis has opened an abundance of potential therapeutic options, whereby first anti-angiogenic strategies have already led to improved prognosis in certain cancers. Thereby, the main angiogenic growth factor, the vascular endothelial growth factor (VEGF), has first become the focus of therapeutic interventions in advanced colorectal cancer, non-small cell lung cancer, breast cancer, ovarian cancer, glioblastoma, or renal cell cancer. However, not all patients benefit from anti-VEGF treatment, and those who do respond to such treatment may finally become resistant to anti-angiogenic therapies and relapse. This might lie in the fact that tumor angiogenesis is not only induced by VEGF but by many other VEGF-independent mechanisms. Furthermore, anti-VEGF therapies provoke hypoxia-induced upregulation of pro-angiogenic molecules. This book chapter covers main molecular mechanisms involved in tumor angiogenesis and gives insights in future therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldman E (1907) The growth of malignant disease in man and the lower animals with special reference to the vascular system. Lancet ii:1236–1240

    Article  Google Scholar 

  2. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  3. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  PubMed  CAS  Google Scholar 

  4. Schwarz Q, Ruhrberg C (2010) Neuropilin, you gotta let me know: should I stay or should I go? Cell Adh Migr 4:61–66

    Article  PubMed  Google Scholar 

  5. Shah MA, van Cutsem E, Kang YK et al (2012) Survival analysis according to disease subtype in AVAGAST: first-line capecitabine and cisplatin plus bevacizumab or placebo in patients with advanced gastric cancer. J Clin Oncol 30, 2012 (Suppl 4; Abstr 5)

    Google Scholar 

  6. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, Ruff P, van Hazel GA, Moiseyenko V, Ferry D, McKendrick J, Polikoff J, Tellier A, Castan R, Allegra C. (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012 Oct 1;30(28):3499–506. (Epub 2012 Sep 4)

    Google Scholar 

  7. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  PubMed  CAS  Google Scholar 

  8. Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15:167–170

    Article  PubMed  CAS  Google Scholar 

  9. Sakurai T, Kudo M (2011) Signaling pathways governing tumor angiogenesis. Oncology 81(Suppl 1):24–29

    Article  PubMed  CAS  Google Scholar 

  10. Cao Y, Cao R, Hedlund EM (2008) R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl) 86(7):785–789

    Article  CAS  Google Scholar 

  11. Korc M, Friesel RE (2009) The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 9:639–651

    Article  PubMed  CAS  Google Scholar 

  12. Beenken A, Mohammadi M (2008) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  CAS  Google Scholar 

  13. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  14. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  15. McCarty MF, Somcio RJ, Stoeltzing O et al (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117:2114–2122

    Article  PubMed  CAS  Google Scholar 

  16. Nissen LJ, Cao R, Hedlund EM et al (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117:2766–2777

    Article  PubMed  CAS  Google Scholar 

  17. Dufraine J, Funahashi Y, Kitajewski J (2008) Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 27:5132–5137

    Article  PubMed  CAS  Google Scholar 

  18. Sainson RC, Harris AL (2008) Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis 11:41–51

    Article  PubMed  CAS  Google Scholar 

  19. Kuhnert F, Kirshner JR, Thurston G (2011) Dll4-Notch signaling as a therapeutic target in tumor angiogenesis. Vasc Cell 3:20

    Article  PubMed  CAS  Google Scholar 

  20. Zerlin M, Julius MA, Kitajewski J (2008) Wnt/Frizzled signaling in angiogenesis. Angiogenesis 11:63–69

    Article  PubMed  CAS  Google Scholar 

  21. Easwaran V, Lee SH, Inge L et al (2003) beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res 63:3145–3153

    PubMed  CAS  Google Scholar 

  22. Muley A, Majumder S, Kolluru GK et al (2010) Secreted frizzled-related protein 4: an angiogenesis inhibitor. Am J Pathol 176:1505–1516

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16:3153–3162

    Article  PubMed  CAS  Google Scholar 

  24. Davis S, Aldrich TH, Jones PF et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  PubMed  CAS  Google Scholar 

  25. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  26. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177

    Article  PubMed  CAS  Google Scholar 

  27. De PM, Naldini L (2009) Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim Biophys Acta 1796:5–10

    Google Scholar 

  28. Huang H, Bhat A, Woodnutt G, Lappe R (2010) Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 10:575–585

    Article  PubMed  CAS  Google Scholar 

  29. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11–16

    Article  PubMed  CAS  Google Scholar 

  30. Zhong C, Qu X, Tan M et al (2009) Characterization and regulation of bv8 in human blood cells. Clin Cancer Res 15:2675–2684

    Article  PubMed  CAS  Google Scholar 

  31. LeCouter J, Zlot C, Tejada M et al (2004) Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA 101:16813–16818

    Article  PubMed  CAS  Google Scholar 

  32. Shojaei F, Wu X, Zhong C et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

  33. Shojaei F, Wu X, Qu X et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106:6742–6747

    Article  PubMed  CAS  Google Scholar 

  34. Okazaki T, Ebihara S, Asada M et al (2006) Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int Immunol 18:1–9

    Article  PubMed  CAS  Google Scholar 

  35. Natori T, Sata M, Washida M et al (2002) G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun 297:1058–1061

    Article  PubMed  CAS  Google Scholar 

  36. Shojaei F, Zhong C, Wu X et al (2008) Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol 18:372–378

    Article  PubMed  CAS  Google Scholar 

  37. Nolan DJ, Ciarrocchi A, Mellick AS et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558

    Article  PubMed  CAS  Google Scholar 

  38. Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34

    Article  PubMed  CAS  Google Scholar 

  39. Dong J, Grunstein J, Tejada M et al (2004) VEGF-null cells require PDGFR alpha signaling-­mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23:2800–2810

    Article  PubMed  CAS  Google Scholar 

  40. Kindler HL, Niedzwiecki D, Hollis D et al (2010) Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28:3617–3622

    Article  PubMed  CAS  Google Scholar 

  41. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  PubMed  CAS  Google Scholar 

  42. Kindler HL, Wroblewski K, Wallace JA et al (2012) Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: a phase II trial of the University of Chicago Phase II Consortium. Invest New Drugs 30:382–386

    Article  PubMed  CAS  Google Scholar 

  43. Gharibo M, Patrick-Miller L, Zheng L et al (2008) A phase II trial of imatinib mesylate in patients with metastatic pancreatic cancer. Pancreas 36:341–345

    Article  PubMed  CAS  Google Scholar 

  44. Xian X, Hakansson J, Stahlberg A et al (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642–651

    Article  PubMed  CAS  Google Scholar 

  45. Crippa MP (2007) Urokinase-type plasminogen activator. Int J Biochem Cell Biol 39:690–694

    Article  PubMed  CAS  Google Scholar 

  46. Carmeliet P, Kieckens L, Schoonjans L et al (1993) Plasminogen activator inhibitor-1 gene-­deficient mice. I. Generation by homologous recombination and characterization. J Clin Invest 92:2746–2755

    Article  PubMed  CAS  Google Scholar 

  47. Binder BR, Mihaly J, Prager GW (2007) uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist’s view. Thromb Haemost 97:336–342

    PubMed  CAS  Google Scholar 

  48. Prager GW, Breuss JM, Steurer S et al (2004) Vascular Endothelial Growth Factor Receptor-­2-Induced Initial Endothelial Cell Migration Depends on the Presence of the Urokinase Receptor. Circ Res 94:1562–1570

    Article  PubMed  CAS  Google Scholar 

  49. D’Alessio S, Gerasi L, Blasi F (2008) uPAR-deficient mouse keratinocytes fail to produce EGFR-dependent laminin-5, affecting migration in vivo and in vitro. J Cell Sci 121:3922–3932

    Article  PubMed  CAS  Google Scholar 

  50. Lund LR, Green KA, Stoop AA et al (2006) Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice. EMBO J 25:2686–2697

    Article  PubMed  CAS  Google Scholar 

  51. Bajou K, Masson V, Gerard RD et al (2001) The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 152:777–784

    Article  PubMed  CAS  Google Scholar 

  52. Appella E, Blasi F (1987) The growth factor module of urokinase is the binding sequence for its receptor. Ann N Y Acad Sci 511:192–195

    Article  PubMed  CAS  Google Scholar 

  53. Huai Q, Mazar AP, Kuo A et al (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science 311:656–659

    Article  PubMed  CAS  Google Scholar 

  54. Pepper MS, Ferrara N, Orci L, Montesano R (1991) Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181:902–906

    Article  PubMed  CAS  Google Scholar 

  55. Estreicher A, Muhlhauser J, Carpentier JL et al (1990) The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 111:783–792

    Article  PubMed  CAS  Google Scholar 

  56. Prager GW, Breuss JM, Steurer S et al (2004) Vascular endothelial growth factor (VEGF) induces rapid prourokinase (pro-uPA) activation on the surface of endothelial cells. Blood 103:955–962

    Article  PubMed  CAS  Google Scholar 

  57. Nykjaer A, Conese M, Christensen EI et al (1997) Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J 16:2610–2620

    Article  PubMed  CAS  Google Scholar 

  58. Takahashi T, Takahashi K, Mernaugh RL et al (2006) A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis. Blood 108:1234–1242

    Article  PubMed  CAS  Google Scholar 

  59. Pera IL, Iuliano R, Florio T, Susini C, Trapasso F, Santoro M et al (2005) The rat tyrosine phosphatase eta increases cell adhesion by activating c-Src through dephosphorylation of its inhibitory phosphotyrosine residue. Oncogene 24:3187–3195

    Article  PubMed  CAS  Google Scholar 

  60. Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–943

    Article  PubMed  CAS  Google Scholar 

  61. Webb DJ, Nguyen DH, Gonias SL (2000) Extracellular signal-regulated kinase functions in the urokinase receptor-dependent pathway by which neutralization of low density lipoprotein receptor-related protein promotes fibrosarcoma cell migration and matrigel invasion. J Cell Sci 113:123–134

    PubMed  CAS  Google Scholar 

  62. Ma Z, Thomas KS, Webb DJ et al (2002) Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol 159:1061–1070

    Article  PubMed  CAS  Google Scholar 

  63. Nykjaer A, Petersen CM, Moller B et al (1992) Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem 267:14543–14546

    PubMed  CAS  Google Scholar 

  64. Nguyen DH, Webb DJ, Catling AD et al (2000) Urokinase-type plasminogen activator stimulates the Ras/Extracellular signal-regulated kinase (ERK) signaling pathway and MCF-7 cell migration by a mechanism that requires focal adhesion kinase, Src, and Shc. Rapid dissociation of GRB2/Sps-Shc complex is associated with the transient phosphorylation of ERK in urokinase-treated cells. J Biol Chem 275:19382–19388

    Article  PubMed  CAS  Google Scholar 

  65. Geetha N, Mihaly J, Stockenhuber A et al (2011) Signal integration and coincidence detection in the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) cascade: concomitant activation of receptor tyrosine kinases and of LRP-1 leads to sustained ERK phosphorylation via down-regulation of dual specificity phosphatases (DUSP1 and -6). J Biol Chem 286:25663–25674

    Article  PubMed  CAS  Google Scholar 

  66. Wei Y, Eble JA, Wang Z et al (2001) Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell 12:2975–2986

    PubMed  CAS  Google Scholar 

  67. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147:89–104

    Article  PubMed  CAS  Google Scholar 

  68. Carriero MV, Del VS, Capozzoli M et al (1999) Urokinase receptor interacts with alpha(v)beta5 vitronectin receptor, promoting urokinase-dependent cell migration in breast cancer. Cancer Res 59:5307–5314

    PubMed  CAS  Google Scholar 

  69. Wei Y, Czekay RP, Robillard L et al (2005) Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. J Cell Biol 168:501–511

    Article  PubMed  CAS  Google Scholar 

  70. Chaurasia P, Guirre-Ghiso JA, Liang OD et al (2006) Region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J Biol Chem 281:14852–14863

    Article  PubMed  CAS  Google Scholar 

  71. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695

    PubMed  CAS  Google Scholar 

  72. Smith HW, Marra P, Marshall CJ (2008) uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180. J Cell Biol 182:777–790

    Article  PubMed  CAS  Google Scholar 

  73. Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11:23–36

    Article  PubMed  CAS  Google Scholar 

  74. Leksa V, Godar S, Cebecauer M et al (2002) The N-terminus of mannose 6-phosphate/Insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J Biol Chem 280:14811–14818

    Google Scholar 

  75. Resnati M, Pallavicini I, Wang JM et al (2002) The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci U S A 99:1359–1364

    Article  PubMed  CAS  Google Scholar 

  76. Liu D, Aguirre GJ, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457

    Article  PubMed  CAS  Google Scholar 

  77. Cavallaro U, Wu Z, Di Palo A et al (1998) FGF-2 stimulates migration of Kaposi’s sarcoma-­like vascular cells by HGF-dependent relocalization of the urokinase receptor. FASEB J 12:1027–1034

    PubMed  CAS  Google Scholar 

  78. Loukinova E, Ranganathan S, Kuznetsov S et al (2002) Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function between LRP and the PDGF. J Biol Chem 277:15499–15506

    Article  PubMed  CAS  Google Scholar 

  79. Schmitt M, Mengele K, Napieralski R et al (2010) Clinical utility of level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 10:1051–1067

    Article  PubMed  CAS  Google Scholar 

  80. Nekarda H, Schlegel P, Schmitt M et al (1998) Strong prognostic impact of tumor-­associated urokinase-type plasminogen activator in completely resected adenocarcinoma of the esophagus. Clin Cancer Res 4:1755–1763

    PubMed  CAS  Google Scholar 

  81. Kaneko T, Konno H, Baba M et al (2003) Urokinase-type plasminogen activator expression correlates with tumor angiogenesis and poor outcome in gastric cancer. Cancer Sci 94:43–49

    Article  PubMed  CAS  Google Scholar 

  82. Ishida T, Sugio K, Yokoyama K et al (1991) Immunohistochemical evidences of prognostic parameters associated with tumor development of pulmonary adenocarcinoma. Nihon Geka Gakkai Zasshi 92:1107–1110

    PubMed  CAS  Google Scholar 

  83. Kuhn W, Pache L, Schmalfeldt B et al (1994) Urokinase (uPA) and PAI-1 predict survival in advanced ovarian cancer patients (FIGO III) after radical surgery and platinum-based chemotherapy. Gynecol Oncol 55:401–409

    Article  PubMed  CAS  Google Scholar 

  84. Mulcahy HE, Duffy MJ, Gibbons D et al (1994) Urokinase-type plasminogen activator and outcome in Dukes’ B colorectal cancer. Lancet 344:583–584

    Article  PubMed  CAS  Google Scholar 

  85. Berger DH (2002) Plasmin/plasminogen system in colorectal cancer. World J Surg 26:767–771

    Article  PubMed  Google Scholar 

  86. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  87. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    Article  PubMed  CAS  Google Scholar 

  88. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298

    Article  PubMed  CAS  Google Scholar 

  89. Colombatti A, Bonaldo P, Doliana R (1993) Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix 13:297–306

    Article  PubMed  CAS  Google Scholar 

  90. Gamble LJ, Borovjagin AV, Matthews QL (2010) Role of RGD-containing ligands in targeting cellular integrins: Applications for ovarian cancer virotherapy (Review). Exp Ther Med 1:233–240

    PubMed  CAS  Google Scholar 

  91. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed  CAS  Google Scholar 

  92. Bolos V, Gasent JM, Lopez-Tarruella S, Grande E (2010) The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther 3:83–97

    Article  PubMed  CAS  Google Scholar 

  93. Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775:163–180

    PubMed  CAS  Google Scholar 

  94. Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 2002:E7

    Article  Google Scholar 

  95. Critchley DR (2004) Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem Soc Trans 32(Pt 5):831–836

    PubMed  CAS  Google Scholar 

  96. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    Article  PubMed  CAS  Google Scholar 

  97. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  98. Walker JL, Fournier AK, Assoian RK (2005) Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. Cytokine Growth Factor Rev 16:395–405

    Article  PubMed  CAS  Google Scholar 

  99. Friedlander M, Brooks PC, Shaffer RW et al (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502

    Article  PubMed  CAS  Google Scholar 

  100. Hood JD, Frausto R, Kiosses WB et al (2003) Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 162:933–943

    Article  PubMed  CAS  Google Scholar 

  101. Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8:604–617

    Article  PubMed  CAS  Google Scholar 

  102. George EL, Georges-Labouesse EN, Patel-King RS et al (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  103. Fassler R, Meyer M (1995) Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9:1896–1908

    Article  PubMed  CAS  Google Scholar 

  104. Fassler R, Pfaff M, Murphy J et al (1995) Lack of beta 1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J Cell Biol 128:979–988

    Article  PubMed  CAS  Google Scholar 

  105. Senger DR, Claffey KP, Benes JE et al (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA 94:13612–13617

    Article  PubMed  CAS  Google Scholar 

  106. Whelan MC, Senger DR (2003) Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem 278:327–334

    Article  PubMed  CAS  Google Scholar 

  107. Sweeney SM, DiLullo G, Slater SJ et al (2003) Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem 278:30516–30524

    Article  PubMed  CAS  Google Scholar 

  108. Senger DR, Perruzzi CA, Streit M et al (2002) The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160:195–204

    Article  PubMed  CAS  Google Scholar 

  109. Goh KL, Yang JT, Hynes RO (1997) Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 124:4309–4319

    PubMed  CAS  Google Scholar 

  110. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362

    Article  PubMed  CAS  Google Scholar 

  111. Boudreau NJ, Varner JA (2004) The homeobox transcription factor Hox D3 promotes integrin alpha5beta1 expression and function during angiogenesis. J Biol Chem 279:4862–4868

    Article  PubMed  CAS  Google Scholar 

  112. Yang JT, Rayburn H, Hynes RO (2003) Embryonic mesodermal defects in alpha 5 integrin-­deficient mice. Development 119:1093–1105

    Google Scholar 

  113. Kuwada SK (2007) Drug evaluation: Volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr Opin Mol Ther 9:92–98

    PubMed  CAS  Google Scholar 

  114. Ricart AD, Tolcher AW, Liu G, Holen K et al (2008) Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res 14:7924–7929

    Article  PubMed  CAS  Google Scholar 

  115. Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95:507–519

    Article  PubMed  CAS  Google Scholar 

  116. Reynolds LE, Wyder L, Lively JC et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34

    Article  PubMed  CAS  Google Scholar 

  117. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–5671

    Article  PubMed  CAS  Google Scholar 

  118. Zhang D, Pier T, McNeel DG et al (2007) Effects of a monoclonal anti-alphavbeta3 integrin antibody on blood vessels—a pharmacodynamic study. Invest New Drugs 25:49–55

    Article  PubMed  CAS  Google Scholar 

  119. Cai W, Wu Y, Chen K et al (2006) In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin alpha v beta 3. Cancer Res 66:9673–9681

    Article  PubMed  CAS  Google Scholar 

  120. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46

    Article  PubMed  CAS  Google Scholar 

  121. Drake CJ, Cheresh DA, Little CD (1995) An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108:2655–2661

    PubMed  CAS  Google Scholar 

  122. Trikha M, Zhou Z, Nemeth JA et al (2004) CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer 110:326–335

    Article  PubMed  CAS  Google Scholar 

  123. O’Day SJ, Pavlick AC, Albertini MR et al (2011) Clinical and pharmacologic evaluation of two dose levels of intetumumab (CNTO 95) in patients with melanoma or angiosarcoma. Invest New Drugs 30:1074–1081

    Article  PubMed  CAS  Google Scholar 

  124. Reardon DA, Neyns B, Weller M et al (2011) Cilengitide: an RGD pentapeptide alphanubeta3 and alphanubeta5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol 7:339–354

    Article  PubMed  CAS  Google Scholar 

  125. Weller M (2011) Novel diagnostic and therapeutic approaches to malignant glioma. Swiss Med Wkly 141:w13210

    PubMed  Google Scholar 

  126. Vermorken JB, Guigay J, Mesia R et al (2011) Phase I/II trial of cilengitide with cetuximab, cisplatin and 5-fluorouracil in recurrent and/or metastatic squamous cell cancer of the head and neck: findings of the phase I part. Br J Cancer 104:1691–1696

    Article  PubMed  CAS  Google Scholar 

  127. Cheng C, Komljenovic D, Pan L et al (2011) Evaluation of treatment response of cilengitide in an experimental model of breast cancer bone metastasis using dynamic PET with (18)F-FDG. Hell J Nucl Med 14:15–20

    PubMed  Google Scholar 

  128. Oliveira-Ferrer L, Hauschild J, Fiedler W et al (2008) Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res 27:86

    Article  PubMed  CAS  Google Scholar 

  129. Nisato RE, Tille JC, Jonczyk A et al (2003) alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6:105–119

    Article  PubMed  CAS  Google Scholar 

  130. Reynolds AR, Hart IR, Watson AR et al (2009) Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15:392–400

    Article  PubMed  CAS  Google Scholar 

  131. Millard M, Odde S, Neamati N (2011) Integrin targeted therapeutics. Theranostics 1:154–188

    Article  PubMed  CAS  Google Scholar 

  132. Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  PubMed  CAS  Google Scholar 

  133. Paez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  PubMed  CAS  Google Scholar 

  134. Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Prager M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prager, G.W., Zielinski, C.C. (2013). Angiogenesis in Cancer. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_18

Download citation

Publish with us

Policies and ethics