Skip to main content

Heat Transfer with Nanofluids

  • Chapter
  • First Online:
Heat and Mass Transfer in Particulate Suspensions

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

Nanofluids are suspensions of nano-size particles (typically 5–1,000;nm) in liquids. Several research projects in the late 1990s and the first decade of the twenty-first century indicated that the addition of small amounts of nanoparticles in common cooling fluids increases significantly the effective conductivity of these suspensions as well as their convective heat transfer coefficients. While typical experimentally determined conductivity enhancements were in the range 10–50%, some early experiments showed enhancement values higher than 100%. Experiments on the mass transfer coefficients with nanofluids reported more dramatic results with maximum mass transfer enhancements in the range of two to six times that of the base fluid. The significantly enhanced transport properties of the nanofluids have enormous implications in industrial processes, such as the cooling of very small electronic components, which will comprise the next generation of computer chips, absorption of gases by liquid carriers, chemical reactions, combustion for electricity generation, cooling of IC engines, directed-energy weapons, boiling under microgravity conditions, nuclear reactor cooling, and biomedicine. Because of the enormous industrial and economic potential of nanofluids, a significant amount of research was conducted during the first decade of the twenty-first century on the thermal and transport properties and applications of nanofluids, hundreds of journal articles were written, and several conferences were devoted to the subject. This chapter describes the salient heat transfer characteristics of nanofluids. At first, the chapter includes a fundamental description of continua and when nanoparticles may be considered as continua. Second, a rigorous definition of the thermodynamic properties of heterogeneous mixtures is given, with applications to the density and specific heat capacity of nanofluids. Third, the transport properties of nanofluids are described, in particular, viscosity and conductivity. Likely mechanisms for the enhancements of the transport properties are also described in detail and in a critical way. Finally, experimental results and the underlying theory are presented on the enhancement of the convective heat transfer coefficients and the effect of nanoparticles on the pool boiling processes and the critical heat flux of the base fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In addition to the motion of the particle, this agitation includes the movement of the fluid that is carried by the particle as virtual mass and also the movement of the surrounding fluid that “rushes in” to fill the volume of the moving particle.

  2. 2.

    It must be recalled from Sect. 4.3.3 that thermophoresis is the manifestation of Brownian motion in a temperature gradient. The two are not independent mechanisms to be treated independently.

Bibliography

  • Altan CL, Elkatmis A, Yuksel M, Asian N, Bucak S (2011) Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J Appl Phys 110:093917-1–093917-7

    Article  Google Scholar 

  • Anoop KB, Kabelac S, Sundarajan T, Das SK (2009) Rheological and flow characteristics of nanofluids. J Appl Phys 106:034909

    Article  Google Scholar 

  • Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3-water nanofluids form a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419

    Article  Google Scholar 

  • Basset AB (1888) Treatise on hydrodynamics. Bell, London

    MATH  Google Scholar 

  • Batchelor G (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles, I. Fluid Mech 83:97–117

    Article  MathSciNet  Google Scholar 

  • Berg JC (2010) An introduction to interfaces and colloids - the bridge to nanoscience. World Scientific, Hackensack, NJ

    Google Scholar 

  • Bergman TL (2009) Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. Int J Heat Mass Transf 52:1240–1244

    Article  MATH  Google Scholar 

  • Bonnecaze RT, Brady JF (1990) A method for determining the effective conductivity of dispersions of particles. Proc Math Phys Sci 430(1879):285–313

    Article  MATH  Google Scholar 

  • Bonnecaze RT, Brady JF (1991) The effective conductivity of random suspensions of spherical particles. Proc Math Phys Sci 423(186):445–465

    Article  Google Scholar 

  • Brinkman H (1952) The viscosity of concentrated suspensions in solutions. J Chem Phys 20:571–582

    Article  Google Scholar 

  • Brock JR (1962) On the theory of thermal forces acting on aerosol particles. J Colloid Sci 17:768–780

    Article  Google Scholar 

  • Bruggeman DAG (1935) Berehnung vershidener physikalisher Konstanten von heterogenen Substanzen: I. Anallen der Physik 24:636–664

    Article  Google Scholar 

  • Brunn PO (1982) Heat or mass transfer from single spheres in a low Reynolds number flow. Int J Eng Sci 20(7):817–822

    Article  MathSciNet  MATH  Google Scholar 

  • Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim JH, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Vaerenbergh SV, Wen D, Witharana S, Yang C, Yeh WH, Zhao XZ, Zhou SQ (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312

    Article  Google Scholar 

  • Chaudhri A, Lukes JR (2009) Multicomponent energy conserving dissipative particle dynamics: a general framework for mesoscopic heat transfer applications. J Heat Transf 131:033108-1–033108-9

    Article  Google Scholar 

  • Chen H, Ding Y, He Y, Tan C (2007) Rheological behavior of ethylene glycol based titania nanofluids. Chem Phys Lett 444:333–337

    Article  Google Scholar 

  • Cherkasova AS, Shan JW (2008) Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. J Heat Transf 130:082406-1–082406-7

    Article  Google Scholar 

  • Cherkasova AS, Shan JW (2010) Particle aspect-ratio and agglomeration-state effects on the effective thermal conductivity of aqueous suspensions of multiwalled carbon nanotubes. J Heat Transf 132:082402-1–082402-11

    Article  Google Scholar 

  • Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transf 131:033106-1–033106-9

    Article  Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  • Choi CH, Ulmanella U, Kim J (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18:087105-1–087105-8

    Google Scholar 

  • Chopkar M, Sudarshan S, Das PK, Manna I (2008) Effect of particle size on thermal conductivity of nanofluids. Metallurg Mater Trans A 39(7):1535–1542

    Article  Google Scholar 

  • Dansinger WJ (1963) Heat transfer to fluidized gas-solids mixtures in vertical transport. Ind Eng Chem Fundam 2(4):269–276

    Google Scholar 

  • Das SK, Putra SK, Roetzel W (2003) Pool boiling characteristics of nanofluids. Int J Heat Mass Transf 46:851–862

    Article  Google Scholar 

  • Di Felice R, Rotondi M (2011) Fluid-particle drag force in binary-solid suspensions. Ind Eng Chem Res 011-01997f:1–37

    Google Scholar 

  • Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Article  Google Scholar 

  • Duan Z, Muzychka YS (2008) Slip flow heat transfer in annular microchannels with constant heat flux. J Heat Transf 130:092401-1–092401-8

    Google Scholar 

  • Duan Z, Muzychka YS (2010) Effects of axial corrugated roughness on low Reynolds number slip flow and continuum flow in microtubes. J Heat Transf 132:041001-1–041001-9

    Google Scholar 

  • Eapen J, Rusconi R, Piazza R, Yip S (2010) The classical nature of thermal conduction in nanofluids. J Heat Transf 132:102402-1–102402-14

    Article  Google Scholar 

  • Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S (2011) Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf 54:4376–4388

    Article  MATH  Google Scholar 

  • EI-Genk MS, Yang IH (2008) Friction numbers and viscous dissipation heating for laminar flows of water in microtubes. J Heat Transf 130:082405-1–082405-13

    Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Molekuldimensionen. Ann Phys 19:289–306

    Article  MATH  Google Scholar 

  • Esparza HE (2012) Heat transfer enhancement in laminar microchannel flow by Monte Carlo simulations. M.S. Thesis, San Antonio, UT

    Google Scholar 

  • Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116

    Article  Google Scholar 

  • Fan J, Wang L (2011) Heat conduction in nanofluids: structure-property correlation. Int J Heat Mass Transf 54:4349–4359

    Article  MathSciNet  MATH  Google Scholar 

  • Fantoni R, Giacometti A, Sciortino F, Pastore G (2010) Cluster theory of Janus particles. Soft Matter R Soc Chem 7:2419–2427

    Article  Google Scholar 

  • Farbar L, Depew CA (1963) Heat transfer effects to gas-solids mixtures in a circular tube. Ind Eng Chem Fundam 2:130–135

    Article  Google Scholar 

  • Frenkel N, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 6:847–853

    Google Scholar 

  • Gao JW, Zheng R, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction in nanofluids. Clue on clustering. Nano Lett 9:4128–4132

    Article  Google Scholar 

  • Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54:4051–4068

    Article  Google Scholar 

  • Gibbs JW (1878) On the equilibrium of heterogeneous substances. In: The collective works of J. Willard Gibbs. Longmans, New York

    Google Scholar 

  • Goicochea JV, Madrid M, Amon C (2010) Thermal properties for bulk silicon based on the determination of relaxation times using molecular dynamics. J Heat Transf 132:012401-1–012401-11

    Google Scholar 

  • Granger R, Penninck S, Michaelides EE (2012) A critical review of nanofluid heat transfer – comparisons with particulate heat transfer on the macro-scale. In: ASME-IMECE, Houston, Nov 2012

    Google Scholar 

  • Gupta SS, Siva VM, Krishnan S, Sreeprasad TS, Singh PK, Pradeep T, Das SK (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110:084302-1–084302-6

    Google Scholar 

  • Gurrum SP, King WP, Joshi YK, Ramakrishna K (2008) Size effect on the thermal conductivity of thin metallic films investigated by scanning joule expansion microscopy. J Heat Transf 130:082403-1–082403-8

    Article  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous component systems. Ind Eng Chem Fundam 1:187–191

    Article  Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second moment code format. J Eng Mech Div ASCE 100:111–121

    Google Scholar 

  • Heris SZ, Etemad SG, Esfahany MN (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf 33:529–535

    Article  Google Scholar 

  • Heyhat MM, Kowsary F (2010) Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe. J Heat Transf 132:062401-1–062401-9

    Article  Google Scholar 

  • Hong SW, Kang YT, Kleinstreuer C, Koo J (2011) Impact analysis of natural convection on thermal conductivity measurements of nanofluids using the transient hot-wire method. Int J Heat Mass Transf 54:3448–3456

    Article  MATH  Google Scholar 

  • Hosseini MS, Mohebbi A, Ghader S (2011) Prediction of thermal conductivity and convective heat transfer coefficient of nanofluids by local composition theory. J Heat Transf 133:052401-1–052401-9

    Article  Google Scholar 

  • Huang KH, Lee C-W, Wang C-K (2011) Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf 54:4895–4903

    Article  Google Scholar 

  • Jiji L (2008) Effect of rarefaction, dissipation, and accommodation coefficients on heat transfer in microcylindrical Couette flow. J Heat Transf 130:042404-1–042404-8

    Article  Google Scholar 

  • Ju YS, Kim J, Hung MT (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J Heat Transf 130:092403-1–092403-6

    Google Scholar 

  • Jung JY, Yoo JY (2009) Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). Int J Heat Mass Transf 52:525–528

    Article  Google Scholar 

  • Jung JY, Cho C, Lee WH, Kang YT (2011) Thermal conductivity measurement and characterization of binary nanofluids. Int J Heat Mass Transf 54:1728–1733

    Article  Google Scholar 

  • Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196

    Article  MATH  Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  • Kestin J, Paul R, Shankland IR, Khalifa HE (1980) A high-temperature, high-pressure oscillating-disk viscometer for concentrated ionic solutions. Berichte der Bunsengesellschaft für physikalische Chemie 84:1255–1260. doi:10.1002/bbpc.19800841212

    Article  Google Scholar 

  • Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf 54:4410–4428

    Article  MATH  Google Scholar 

  • Khiabani RH, Joshi Y, Aidun CK (2010) Heat transfer in microchannels with suspended solid particles: Lattice-Boltzmann based computations. J Heat Transf 132:041003-1–041003-9

    Article  Google Scholar 

  • Kim J-K, Jung JY, Kang YT (2006) The effect of nano-particles on the bubble absorption performance in a binary nanofluid. Int J Refrigeration 29:22–29

    Article  Google Scholar 

  • Kim S, Kim C, Lee WH, Park SR (2011) Rheological properties of alumina nanofluids and their implication to the heat transfer enhancement mechanism. J Appl Phys 110:034316-1–034316-6

    Google Scholar 

  • Kolade B, Goodson KE, Eaton JK (2009) Convective performance of nanofluids in a laminar thermally developing tube flow. J Heat Transf 131:052402-1–052402-8

    Article  Google Scholar 

  • Komati S, Suresh AK (2009) Anomalous enhancement of interphase transport rates by nanoparticles: effect of magnetic iron oxide on gas-liquid mass transfer. Ind Eng Chem Res 49(1):390–405

    Article  Google Scholar 

  • Kondaraju S, Jin EK, Lee JS (2010) Direct numerical simulation of thermal conductivity of nanofluids: the effect of temperature two-way coupling and coagulation of particles. Int J Heat Mass Transf 53:862–869

    Article  MATH  Google Scholar 

  • Koo J, Kleinstreuter C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588

    Article  Google Scholar 

  • Koo J, Kleinstreuter C (2005a) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transf 32:1111–1118

    Article  Google Scholar 

  • Koo J, Kleinstreuter C (2005b) Laminar nanofluid flow in microheat sinks. Int J Heat Mass Transf 48:2652–2661

    Article  MATH  Google Scholar 

  • Krieger IM (1959) A mechanism for non-newtonian flow in a suspension of rigid spheres. Trans Soc Reol 3:137–152

    Article  Google Scholar 

  • Krieger IM (1972) Rheology of polydisperse latices. Adv Colloid Interface Sci 71:622–624

    Google Scholar 

  • Krieger IM, Eguiluz M (1976) The second electroviscous effect in polymer lattices. Trans Soc Rheol 20:29–45

    Article  Google Scholar 

  • Krishna K, Ganapathy H, Sateesh G, Das S (2011) Pool boiling characteristics of metallic nanofluids. J Heat Transf 133:111501-1–111501-8

    Article  Google Scholar 

  • Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301-1–144301-4

    Article  Google Scholar 

  • Kuravi S, Kota KM, Du J, Chow LC (2009) Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels. J Heat Transf 131:062901-1–062901-9

    Article  Google Scholar 

  • Lai WY, Vinod S, Phelan PE, Prasher R (2009) Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube. J Heat Transf 131:112401-1–112401-9

    Google Scholar 

  • Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air-water flow. J Fluid Mech 222:95–118

    Article  Google Scholar 

  • Lee D, Kim JW, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328

    Article  Google Scholar 

  • Lee HJ, Liu DY, Alyousef Y, Yao S (2010a) Generalized two-phase pressure drop and heat transfer correlations in evaporative micro/minichannels. J Heat Transf 132:041004-1–041004-9

    Google Scholar 

  • Lee J, Gharagozloo P, Kolade B, Eaton J, Goodson K (2010b) Nanofluid convection in microtubes. J Heat Transf 132:092401-1–092401-5

    Google Scholar 

  • Lee SW, Park SD, Kang S, Bang IC, Kim JH (2011) Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf 54:433–438

    Article  MATH  Google Scholar 

  • Li T, Benyahia S (2011) Revisiting Johnson and Jackson boundary conditions for granular flows. AIChE J 57:1–11

    Google Scholar 

  • Li J, Kleinstreuer C (2010) Entropy generation analysis for nanofluid flow in microchannels. J Heat Transf 132:122401-1–122401-8

    Article  Google Scholar 

  • Li CH, Peterson GP (2007) Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids). Int J Heat Mass Transf 50:4668–4677

    Article  MATH  Google Scholar 

  • Li X, Wang T (2008) Two-phase flow simulation of mist film cooling on turbine blades with conjugate internal cooling. J Heat Transf 130:102901-1–102901-8

    Google Scholar 

  • Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49:3028–3033

    Article  Google Scholar 

  • Lohse D, Luther S, Rensen J, van den Berg TH, Mazzitelli I, Toschi F (2004) Turbulent bubbly flow. In: Proceedings of 5th international conference on multiphase flow, Yokohama, Japan

    Google Scholar 

  • Lundgren TS (1972) Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech 51:273–299

    Article  MATH  Google Scholar 

  • Luo T, Lloyd JR (2008) Ab initio molecular dynamics study of nanoscale thermal energy transport. J Heat Transf 130:122403-1–122403-7

    Article  Google Scholar 

  • Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf 55:874–885

    Google Scholar 

  • Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Appl Phys 42(055501):1–6

    Google Scholar 

  • Maxwell JC (1881) A treatise on electricity and magnetism, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Mazzitelli I, Venturoli M, Melchionna S, Succi S (2011) Towards a mesoscopic model of water-like fluids with hydrodynamic interactions. J Chem Phys 135:124902-1–124902-10

    Article  Google Scholar 

  • Michaelides EE (1986) Heat transfer in particulate flows. Int J Heat Mass Transf 29(2):265–273

    Article  Google Scholar 

  • Michaelides EE (2006) Particles, bubbles and drops – their motion, heat and mass transfer. World Scientific, Hackensack, NJ

    Book  Google Scholar 

  • Michaelides EE, Feng Z-G (1994) Heat transfer from a rigid sphere in a non-uniform flow and temperature field. Int J Heat Mass Transf 37:2069–2076

    Article  MATH  Google Scholar 

  • Millikan RA (1923) The general law of fall of a small spherical body through a gas and its bearing upon the nature of molecular reflection from surfaces, Phys. Phys Rev 22:1–23

    Article  Google Scholar 

  • Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6:162–170

    Article  Google Scholar 

  • Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699

    Article  Google Scholar 

  • Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375:666–669

    Article  Google Scholar 

  • Nedea SV, Markvoort AJ, van Steenhoven AA, Hilbers PAJ (2009) Heat transfer predictions for micro/nanochannels at the atomistic level using combined molecular dynamics and Monte Carlo techniques. J Heat Transf 131:033104-1–033104-8

    Article  Google Scholar 

  • Nguyen CT, Desgranges F, Roy G, Galanis N, Marie T, Boucher S, Mintsa HA (2007) Temperature and particle-size dependent viscosity data for water based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506

    Article  Google Scholar 

  • Nie C, Marlow WH, Hassan YA (2008) Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids. Int J Heat Mass Transf 51:1342–1348

    Article  MATH  Google Scholar 

  • O’Hanley H, Buongiorno J, McKrell T, Ho L (2012) Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng. doi:10.1155/2012/181079

  • Olle B et al (2006) Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind Eng Chem Res 45(12):4355–4363

    Article  Google Scholar 

  • Pak B-C, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  • Pfeffer R, Rosetti S, Liclein S (1966) Analysis and correlation of heat transfer coefficient and friction factor data for dilute gas-solids suspensions. NASA report TN D-3603. NASA, Washington, DC

    Google Scholar 

  • Philip J, Sharma PD, Raj B (2008) Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19:305706

    Article  Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901

    Article  Google Scholar 

  • Prasher RS, Bhattacharya P, Phelan PE (2006a) Brownian motion based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595

    Article  Google Scholar 

  • Prasher R, Evans W, Meaking P, Fish J, Phelan P, Keblinski P (2006b) Effects of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett 89:143119

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics, 2nd edn. Elsevier, New York

    Book  Google Scholar 

  • Randrianalisoa J, Baillis D (2008) Monte Carlo simulation of steady-state microscale phonon heat transport. J Heat Transf 130:072404-1–072404-13

    Article  Google Scholar 

  • Russel WR, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Google Scholar 

  • Sarkar S, Selvam RP (2009) Direct numerical simulation of heat transfer in spray cooling through 3D multiphase flow modeling using parallel computing. J Heat Transf 131:121007-1–121007-8

    Article  Google Scholar 

  • Schluderberg DC, Whitelaw RL, Carlson RW (1961) Gaseous suspensions – a new reactor coolant. Nucleonics 19:67–76

    Google Scholar 

  • Shin D, Banerjee D (2010) Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic. Int J Struct Changes Solids 2:25–31

    Google Scholar 

  • Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54:1064–1070

    Article  Google Scholar 

  • Shukla R, Dhir V (2008) Effect of Brownian motion on thermal conductivity of nanofluids. J Heat Transf 130:042406-1–042406-13

    Article  Google Scholar 

  • Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101:737–758

    Article  Google Scholar 

  • Taylor TD (1963) Heat transfer from single spheres in a low Reynolds number slip flow. Phys Fluids 6(7):987–992

    Article  Google Scholar 

  • Tien CL, Lienhard JH (1979) Statistical thermodynamics, revised. Hemisphere, New York

    Google Scholar 

  • Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev WV, Sprunt S, Lopatina LM, Sellinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203

    Article  Google Scholar 

  • Torii S, Yang WJ (2009) Heat transfer augmentation of aqueous suspensions of nano-diamonds in turbulent pipe flow. J Heat Transf 131:043203-1–043203-5

    Article  Google Scholar 

  • Torii D, Ohara T, Ishida K (2010) Molecular-scale mechanism of thermal resistance at the solid-liquid interfaces: influence of interaction parameters between solid and liquid molecules. J Heat Transf 132:012402-1–012402-9

    Article  Google Scholar 

  • Tran-Cong S, Gay M, Michaelides EE (2004) Drag coefficients of irregularly shaped particles. Powder Technol 139:21–32

    Article  Google Scholar 

  • Tseng WJ, Chen CN (2003) Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions. Mater Sci Eng A347:145–153

    Google Scholar 

  • Tseng WJ, Lin KC (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A355:186–192

    Google Scholar 

  • Tzou DY (2008) Instability of nanofluids in natural convection. J Heat Transf 130:072401-1–072401-9

    Article  Google Scholar 

  • Vrabec J, Horsch M, Hasse H (2009) Molecular dynamics based analysis of nucleation and surface energy of droplets in supersaturated vapors of methane and ethane. J Heat Transf 131:043202-1–043202-4

    Article  Google Scholar 

  • Wachtell GP, Wagener JP, Steigelman WH (1961) Evaluation of gas-graphite suspensions as nuclear reactor coolants. Report NYO-9672 AEC. Franklin Institute, Philadelphia, PA

    Book  Google Scholar 

  • Wamkam CT, Opoku MK, Hong H, Smith P (2011) Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. J Appl Phys 109:024305-1–024305-5

    Article  Google Scholar 

  • Wang L, Wei X (2009) Nanofluids: synthesis, heat conduction, and extension. J Heat Transf 131:033102-1–033102-7

    Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  Google Scholar 

  • Wen D (2008) Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). Int J Heat Mass Transf 51:4958–4965

    Article  MATH  Google Scholar 

  • Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Article  Google Scholar 

  • Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer applications. Int J Heat Fluid Flow 26:855–864

    Article  Google Scholar 

  • Williams W, Buongiorno J, Hu LW (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf 130:042412

    Article  Google Scholar 

  • Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  • Xue QZ (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317

    Article  Google Scholar 

  • Xue QZ, Keblinski P, Philpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid–solid interface on thermal transport. Int J Heat Mass Transf 47:4277–4284

    Article  MATH  Google Scholar 

  • Yang B (2008) Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (Nanofluids). J Heat Transf 130:042408-1–042408-5

    Google Scholar 

  • You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83:3374–3376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michaelides, E.E.S. (2013). Heat Transfer with Nanofluids. In: Heat and Mass Transfer in Particulate Suspensions. SpringerBriefs in Applied Sciences and Technology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5854-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5854-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5853-1

  • Online ISBN: 978-1-4614-5854-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics