Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 1958 Accesses

Abstract

The constituents of a flowing heterogeneous mixture, such as a particulate suspension, exchange linear and angular momentum, oftentimes exchange mass, and also exchange energy. The processes of momentum, energy, and mass interactions are always related to multiphase engineering systems. For example, in a direct contact heat exchanger, where colder drops are sprayed in the midst of vapor to be condensed, the drops absorb enthalpy from the vapor, and thus, their temperature increases. Because of the direct contact between the cooler drops and the vapor, some of the mass of the vapor condenses on the surface of the drops, thus, increasing the average size of the drops. And, as a result of the hydrodynamic interaction between the vapor and the drops, or between multiple drops, larger drops may break up in two or more smaller ones. This chapter examines the fundamentals of the energy, mass, and momentum interactions between particles—this term encompasses both liquid drops and solid particles—and carrier fluids. Experimental, numerical, and analytical data are presented for the heat, mass, and momentum transfer between the two phases. At first, the pertinent timescales are dimensionless numbers are presented. Second, some interesting relationships on the thermodynamic equilibrium of spherical interfaces in carrier mixtures are derived. Third, the equations of motion and heat/mass transfer are presented for single particles, with emphasis on the closure equations for the drag coefficients and the convective heat/mass transfer coefficients. This part includes several diverse effects due to low or high Reynolds numbers; evaporation (blowing); particle shapes; radiation; rarefaction, including nanoscale particles; and transient conditions. A short section on practical temperature measurements and corrections that must be used with beaded thermocouples concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of the ideal gas equation is convenient but not critical in this derivation. Other equations of state or tubular data may be used instead. In the latter case, the final result may only be obtained by numerical integration.

  2. 2.

    It must be noted that all the values of Re s at the transition points of all the flow regimes are approximate. The values and ranges quoted are for a smooth sphere. The roughness of the surface of the sphere plays an important role in the actual transitions.

  3. 3.

    For incompressible substances such as solids and liquids, the specific heats at constant pressure and constant volume are equal and denoted simply by the symbol c, c p = c v = c.

Bibliography

  • Abramzon B, Elata C (1984) Heat transfer from a single sphere in stokes flow. Int J Heat Mass Transf 27:687–695

    Article  Google Scholar 

  • Abramzon B, Sirignano WA (1989) Droplet vaporization for spray combustion calculations. Int J Heat Mass Transf 32:1605–1618

    Article  Google Scholar 

  • Achenbach E (1974) Vortex shedding from spheres. J Fluid Mech 62:209–221

    Article  Google Scholar 

  • Acrivos A (1980) A note on the rate of heat or mass transfer from a small particle freely suspended in linear shear field. J Fluid Mech 98:299–304

    Article  MathSciNet  MATH  Google Scholar 

  • Acrivos A, Goddard JD (1965) Asymptotic expansions for laminar convection heat and mass transfer. J Fluid Mech 23:273–291

    Article  MathSciNet  Google Scholar 

  • Acrivos A, Taylor TE (1962) Heat and mass transfer from single spheres in stokes flow. Phys Fluids 5:387–394

    Article  MathSciNet  MATH  Google Scholar 

  • Al-taweel AM, Carley JF (1971) Dynamics of single spheres in pulsated flowing liquids: Part I. Experimental methods and results. AIChE Symp Ser 67(116):114–123

    Google Scholar 

  • Balachandar S, Ha MY (2001) Unsteady heat transfer from a sphere in a uniform cross-flow. Phys Fluids 13(12):3714–3728

    Article  Google Scholar 

  • Basset AB (1888) Treatise on hydrodynamics. Bell, London

    MATH  Google Scholar 

  • Boussinesq VJ (1885) Sur la Resistance qu’ Oppose un Liquide IndĂ©fini en Repos …. Comptes Rendu Acad Sci Paris 100:935–937

    MATH  Google Scholar 

  • Brunn PO (1982) Heat or mass transfer from single spheres in a low Reynolds number flow. Int J Eng Sci 20:817–822

    Article  MathSciNet  MATH  Google Scholar 

  • Carslaw HS, Jaeger JC (1947) Conduction of heat in solids. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Chhabra RP, Singh T, Nandrajog S (1995) Drag on chains and agglomerates of spheres in viscous Newtonian and power law fluids. Can J Chem Eng 73:566–571

    Article  Google Scholar 

  • Chiang CH, Raju MS, Sirignano WA (1992) Numerical analysis of a convecting, vaporizing fuel droplet with variable properties. Int J Heat Mass Transf 35:1307–1327

    Article  MATH  Google Scholar 

  • Clift KA, Lever DA (1985) Isothermal flow past a blowing sphere. Int J Numer Methods Fluids 5:709–715

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic, New York

    Google Scholar 

  • Coimbra CFM, Rangel RH (2000) Unsteady heat transfer in the harmonic heating of a dilute suspension of small particles. Int J Heat Mass Transf 43:3305–3316

    Article  MATH  Google Scholar 

  • Coimbra CFM, Edwards DK, Rangel RH (1998) Heat transfer in a homogenous suspension including radiation and history effects. J Thermophys Heat Transf 12:304–312

    Article  Google Scholar 

  • Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC, Boca Raton, FL

    Google Scholar 

  • Dandy DS, Dwyer HA (1990) A sphere in shear flow at finite Reynolds number: effect of particle lift, drag and heat transfer. J Fluid Mech 218:381–412

    Article  Google Scholar 

  • Douglas WJM, Churchill SW (1956) Heat and mass transfer correlations for irregular particles. Chem Eng Symp Ser 52(18):23–28

    Google Scholar 

  • Faxen H (1922) Der Widerstand gegen die Bewegung einer starren Kugel in einer zum den Flussigkeit, die zwischen zwei parallelen Ebenen Winden eingeschlossen ist. Ann Phys 68:89–119

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE (1998) Transient heat transfer from a particle with arbitrary shape and motion. J Heat Transf 120:674–681

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE (2000a) A numerical study on the transient heat transfer from a sphere at high Reynolds and Peclet numbers. Int J Heat Mass Transf 43:219–229

    Article  MATH  Google Scholar 

  • Feng Z-G, Michaelides EE (2000b) Mass and heat transfer from fluid spheres at low Reynolds numbers. Powder Technol 112:63–69

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE (2001a) Drag coefficients of viscous spheres at intermediate and high Reynolds numbers. J Fluids Eng 123:841–849

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE (2001b) Heat and mass transfer coefficients of viscous spheres. Int J Heat Mass Transf 44:4445–4454

    Article  MATH  Google Scholar 

  • Feng Z-G, Michaelides EE (2002) Inter-particle forces and lift on a particle attached to a solid boundary in suspension flow. Phys Fluids 14:49–60

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE (2012) Heat transfer from a nano-sphere with temperature and velocity discontinuities at the interface. Int J Heat Mass Transf 55(23–24):6491–6498

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE, Mao S-L (2012) On the drag force of a viscous sphere with interfacial slip at small but finite Reynolds numbers. Fluid Dyn Res 44:025502. doi:10.1088/0169-5983/44/2/025502

    Article  MathSciNet  Google Scholar 

  • Fourier J (1822) Theorie Analytique de la Chaleur. Paris

    Google Scholar 

  • Galindo V, Gerbeth G (1993) A note on the force on an accelerating spherical drop at low Reynolds numbers. Phys Fluids 5:3290–3292

    Article  MATH  Google Scholar 

  • Gay M, Michaelides EE (2003) Effect of the history term on the transient energy equation of a sphere. Int J Heat Mass Transf 46:1575–1586

    Article  MATH  Google Scholar 

  • Hadamard JS (1911) Mouvement Permanent Lent d’ une Sphere Liquide et Visqueuse dans un Liquide Visqueux. Compte-Rendus de’ l’ Acad des Sci Paris 152:1735–1738

    MATH  Google Scholar 

  • Haider AM, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Technol 58:63–70

    Article  Google Scholar 

  • Harper JF (1972) The motion of bubbles and drops through liquids. Adv Appl Mech 12:59–129

    Article  Google Scholar 

  • Hartman M, Yates JG (1993) Free-fall of solid particles through fluids. Collect Czech Chem Commun 58:961–974

    Article  Google Scholar 

  • Karanfilian SK, Kotas TJ (1978) Drag on a sphere in unsteady motion in a liquid at rest. J Fluid Mech 87:85–96

    Article  Google Scholar 

  • Kim S, Karila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth-Heineman, Boston, MA

    Google Scholar 

  • Kurose R, Makino H, Komori S, Nakamura M, Akamatsu F, Katsuki M (2003) Effects of outflow from surface of sphere on drag, shear lift and scalar diffusion. Phys Fluids 15:2338–2351

    Article  Google Scholar 

  • Lasso IA, Weidman PD (1986) Stokes drag on hollow cylinders and conglomerates. Phys Fluids 29(12):3921–3934

    Article  Google Scholar 

  • Leal LG (1992) Laminar flow and convective transport processes. Butterworth-Heinemann, Boston, MA

    Google Scholar 

  • Lerner SL, Homan HS, Sirignano WA (1980) Multicomponent droplet vaporization at high Reynolds numbers-size, composition and trajectory histories. In: Proceedings of AIChE annual meeting, Chicago

    Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Ling Y, Haselbacher A, Balachandar S (2011a) Importance of unsteady contributions to force and heating for particles in compressible flows. Part 1: Modeling and analysis for shock–particle interaction. Int J Multiphase Flow 37:1026–1044

    Article  Google Scholar 

  • Ling Y, Haselbacher A, Balachandar S (2011b) Importance of unsteady contributions to force and heating for particles in compressible flows. Part 2: Application to particle dispersal by blast waves. Int J Multiphase Flow 37:1013–1025

    Article  Google Scholar 

  • Loth E (2000) Numerical approaches for the motion of dispersed particles, droplets, or bubbles. Prog Energy Combust Sci 26:161–223

    Article  Google Scholar 

  • Lovalenti PM, Brady JF (1993a) The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds numbers. J Fluid Mech 256:561–601

    Article  MathSciNet  MATH  Google Scholar 

  • Lovalenti PM, Brady JF (1993b) The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds numbers. Phys Fluids 5:2104–2116

    Article  MathSciNet  MATH  Google Scholar 

  • Madhav GV, Chhabra RP (1995) Drag on non-spherical particles in viscous fluids. Int J Miner Process 43:15–29

    Article  Google Scholar 

  • Magnus G (1861) A note on the rotary motion of the liquid jet. Annalen der Physik und Chemie 63:363–365

    Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion of a small rigid sphere in a non-uniform flow. Phys Fluids 26:883–889

    Article  MATH  Google Scholar 

  • Maxworthy T (1969) Experiments on the flow around a sphere at high Reynolds numbers. J Appl Mech 91:598–607

    Article  Google Scholar 

  • McLaughlin JB (1991) Inertial migration of a small sphere in linear shear flows. J Fluid Mech 224:261–74

    Article  MATH  Google Scholar 

  • Mei R (1992) An approximate expression of the shear lift on a spherical particle at finite Reynolds numbers. Int J Multiphase Flow 18:145–160

    Article  MATH  Google Scholar 

  • Mei R, Adrian RJ (1992) Flow past a sphere with an oscillation in the free-stream and unsteady drag at finite Reynolds number. J Fluid Mech 237:323–341

    Article  MATH  Google Scholar 

  • Mei R, Lawrence CJ, Adrian RJ (1991) Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J Fluid Mech 233:613–631

    Article  MATH  Google Scholar 

  • Michaelides EE (2003) Hydrodynamic force and heat/mass transfer from particles, bubbles and drops—The Freeman Scholar Lecture. J Fluids Eng 125:209–238

    Article  Google Scholar 

  • Michaelides EE (2006) Particles, bubbles and drops – their motion, heat and mass transfer. World Scientific, Hackensack, NJ

    Book  Google Scholar 

  • Michaelides EE, Feng Z-G (1994) Heat transfer from a rigid sphere in a non-uniform flow and temperature field. Int J Heat Mass Transf 37:2069–2076

    Article  MATH  Google Scholar 

  • Michaelides EE, Feng Z-G (1995) The equation of motion of a small viscous sphere in an unsteady flow with interface slip. Int J Multiphase Flow 21:315–321

    Article  Google Scholar 

  • Michaelides EE, Roig A (2011) A reinterpretation of the Odar and Hamilton data on the unsteady equation of motion of particles. AIChE J. doi:10.1002/aic.12498, 57, 2997-3002

    Google Scholar 

  • Mikami H, Endo Y, Takashima Y (1966) Heat transfer from a sphere to rarefied gas mixtures. Int J Heat Mass Transf 9:1435–1448

    Article  Google Scholar 

  • Odar F, Hamilton WS (1964) Forces on a sphere accelerating in a viscous fluid. J Fluid Mech 18:302–303

    Article  MATH  Google Scholar 

  • Oesterle B, Bui Dinh A (1998) Experiments on the lift of a spinning sphere in the range of intermediate Reynolds numbers. Exp Fluids 25:16–22

    Article  Google Scholar 

  • Oliver DL, Chung JN (1987) Flow about a fluid sphere at low to moderate Reynolds numbers. J Fluid Mech 177:1–18

    Article  MATH  Google Scholar 

  • Parmar M, Haselbacher A, Balachandar S (2011) Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow. Phys Rev Lett 106:084501

    Article  Google Scholar 

  • Pettyjohn ES, Christiansen ER (1948) Effect of particle shape on free-settling rates of isometric particles. Chem Eng Prog 44:157–172

    Google Scholar 

  • Pozrikidis C (1997) Unsteady heat or mass transport from a suspended particle at low Peclet numbers. J Fluid Mech 289:652–688

    Google Scholar 

  • Proudman I, Pearson JRA (1956) Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J Fluid Mech 2:237–262

    Article  MathSciNet  Google Scholar 

  • Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48:141–146

    Google Scholar 

  • Rybczynski W (1911) On the translatory motion of a fluid sphere in a viscous medium. Bull Acad Sci Krakow Ser A 40–46

    Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–398

    Article  MATH  Google Scholar 

  • Saffman PG (1968) The lift on a small sphere in a slow shear flow—corrigendum. J Fluid Mech 31:624–625

    Article  Google Scholar 

  • Sano T (1981) Unsteady flow past a sphere at low Reynolds number. J Fluid Mech 112:433–441

    Article  MATH  Google Scholar 

  • Sazhin SS, Goldstein VA, Heikal MR (2001) A transient formulation of Newton's cooling law for spherical bodies. J Heat Transf 123:63–64

    Article  Google Scholar 

  • Schiller L, Nauman A (1933) Uber die grundlegende Berechnung bei der Schwekraftaufbereitung. Ver Deutch Ing 44:318–320

    Google Scholar 

  • Seeley LE, Hummel RL, Smith JW (1975) Experimental velocity profiles in laminar flow around spheres at intermediate Reynolds numbers. J Fluid Mech 68:591–608

    Article  Google Scholar 

  • Siegel R, Howel JR (1981) Thermal radiation heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Sirignano WA (1999) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Soo SL (1990) Multiphase fluid dynamics. Science, Beijing

    Google Scholar 

  • Sridhar G, Katz J (1995) Drag and lift forces on microscopic bubbles entrained by a vortex. Phys Fluids 7(2):389–399

    Article  Google Scholar 

  • Tanaka T, Yamagata K, Tsuji Y (1990) Experiment on fluid forces on a rotating sphere and a spheroid. In: Proceedings of 2nd KSME-JSME fluids engineering conference, vol 1, pp 266–378

    Google Scholar 

  • Taneda S (1956) Experimental investigation of the wake behind a sphere at low Reynolds numbers. J Phys Soc Jpn 11(10):1104–1108

    Article  Google Scholar 

  • Tomiyama A, Tamai H, Zun I, Hosokawa S (1999) Transverse migration of single bubbles in simple shear flows. In: Proceedings of 2nd international symposium on two-phase flow modeling and experimentation, vol 2, pp 941–948

    Google Scholar 

  • Tran-Cong S, Gay M, Michaelides EE (2004) Drag coefficients of irregularly shaped particles. Powder Technol 139:21–32

    Article  Google Scholar 

  • Tsuji Y, Morikawa Y, Mizuno O (1985) Experimental measurements of the magnus force on a rotating sphere at low Reynolds numbers bubble in an axisymmetric shear flow. J Fluids Eng 107:484–498

    Article  Google Scholar 

  • Vojir DJ, Michaelides EE (1994) The effect of the history term on the motion of rigid spheres in a viscous fluid. Int J Multiphase Flow 20:547–556

    Article  MATH  Google Scholar 

  • Wadell H (1933) Sphericity and roundness of rock particles. J Geol 41:310–331

    Article  Google Scholar 

  • Whitaker S (1972) Forced convection heat transfer correlations for flow in pipes past flat plates, single cylinders, single spheres, and for flow in packed beds and tubes bundles. AIChE J 18:361–371

    Article  Google Scholar 

  • Winnikow S, Chao BT (1966) Droplet motion in purified systems. Phys Fluids 9:50–61

    Article  Google Scholar 

  • Yearling PR, Gould RD (1995) Convective heat and mass transfer from a single evaporating water, ethanol and methanol droplet. Proc ASME-FED 233:33–39

    Google Scholar 

  • Yuen MC, Chen LW (1976) On drag of evaporating droplets. Combust Sci Technol 14:147–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michaelides, E.E.S. (2013). Fundamentals. In: Heat and Mass Transfer in Particulate Suspensions. SpringerBriefs in Applied Sciences and Technology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5854-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5854-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5853-1

  • Online ISBN: 978-1-4614-5854-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics