Skip to main content

Targeting DNA Repair Pathways for Cancer Therapy

  • Chapter
  • First Online:
  • 2362 Accesses

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

DNA repair pathways maintain the integrity of the genome, reducing the onset of cancer, disease, and aging. The majority of anticancer therapeutics (radiation and chemotherapy) function as genotoxins, eliciting genomic DNA damage in an attempt to induce cell death in the tumor. However, cellular DNA repair proteins counteract the effectiveness of these therapeutic genotoxins by repairing and removing the cell death-inducing DNA lesions, implicating DNA repair proteins as prime targets for improving response to currently available anticancer regimens. To trigger a tumor-specific cell death response (with minimal normal cell toxicity), the level of genomic DNA damage must therefore surpass the DNA repair capacity of the tumor without overwhelming the DNA repair potential of normal tissue. Interestingly, cancer-specific DNA repair defects offer novel approaches for tumor-selective therapy. This has become highly relevant as it is suggested that most cancer cells are likely to be defective in some aspect of DNA repair. Herein, we describe the molecular pathways that participate in the repair of DNA damage induced by radiation- and chemotherapeutics and discuss strategies that are being developed to target DNA repair for cancer treatment and highlight key DNA repair inhibitors that can enhance response. Further, we present novel therapeutic strategies being considered to exploit inherent weaknesses in tumor cells such as defects in one or more DNA repair pathways or related processes that may provide the opportunity to selectively increase tumor-specific cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    Article  CAS  PubMed  Google Scholar 

  2. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078. Epub 2009/10/23

    Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. Epub 2011/03/08

    Google Scholar 

  4. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745. Epub 2007/12/18

    Google Scholar 

  5. Ljungman M (2009) Targeting the DNA damage response in cancer. Chem Rev 109(7):2929–2950. Epub 2009/06/24

    Google Scholar 

  6. Alberts B (2009) Redefining cancer research. Science 325(5946):1319. Epub 2009/09/12

    Google Scholar 

  7. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8(3):193–204

    Article  CAS  PubMed  Google Scholar 

  8. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9(10):759–769. Epub 2008/09/25

    Google Scholar 

  9. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  CAS  PubMed  Google Scholar 

  10. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506

    Article  CAS  PubMed  Google Scholar 

  11. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291(5507):1284–1289

    Article  CAS  PubMed  Google Scholar 

  12. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4(4):296–307

    Article  CAS  PubMed  Google Scholar 

  13. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12(2):104–120. Epub 2012/01/13

    Google Scholar 

  14. Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6(8):1079–1099

    Article  CAS  Google Scholar 

  15. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. 2nd Edn. ASM Press, Washington, p 1164

    Google Scholar 

  16. Wyatt MD, Pittman DL (2006) Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem Res Toxicol 19(12):1580–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang JY, Edelmann W (2006) Mismatch repair proteins as sensors of alkylation DNA damage. Cancer Cell 9(6):417–418

    Article  CAS  PubMed  Google Scholar 

  18. Friedman HS, Johnson SP, Dong Q, Schold SC, Rasheed BK, Bigner SH et al (1997) Methylator resistance mediated by mismatch repair deficiency in a glioblastoma multiforme xenograft. Cancer Res 57(14):2933–2936

    CAS  PubMed  Google Scholar 

  19. Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF et al (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26(2):186–197

    Article  CAS  PubMed  Google Scholar 

  20. Caporali S, Falcinelli S, Starace G, Russo MT, Bonmassar E, Jiricny J et al (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66(3):478–491

    CAS  PubMed  Google Scholar 

  21. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7(5):335–346

    Article  CAS  PubMed  Google Scholar 

  22. Pabla N, Ma Z, McIlhatton MA, Fishel R, Dong Z (2011) hMSH2 recruits ATR to DNA damage sites for activation during DNA damage-induced apoptosis. J Biol Chem 286(12):10411–10418. Epub 2011/02/03

    Google Scholar 

  23. Wang Y, Qin J. MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. Proceedings Nat Acad Sci 100(26):15387–15392

    Google Scholar 

  24. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199

    Article  CAS  PubMed  Google Scholar 

  25. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M et al (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14(10):2900–2908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pollack IF, Hamilton RL, Sobol RW, Burnham J, Yates AJ, Holmes EJ et al (2006) MGMT expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 cohort. J Clin Oncol 24(21):3431–3437

    Article  CAS  PubMed  Google Scholar 

  27. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97(12):6242–6244. Epub 2000/06/07

    Google Scholar 

  28. Cohen MH, Johnson JR, Pazdur R (2005) Food and drug administration drug approval summary: temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clin Cancer Res 11(19 Pt 1):6767–6771

    Article  CAS  PubMed  Google Scholar 

  29. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5 year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  30. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  31. Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB et al (2007) Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 13(7):2038–2045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL et al (2009) MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res 15(14):4622–4629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Friedman HS, Keir S, Pegg AE, Houghton PJ, Colvin OM, Moschel RC et al (2002) O6-benzylguanine-mediated enhancement of chemotherapy. Mol Cancer Ther 1(11):943–948

    CAS  PubMed  Google Scholar 

  34. Tserng KY, Ingalls ST, Boczko EM, Spiro TP, Li X, Majka S et al (2003) Pharmacokinetics of O6-benzylguanine (NSC637037) and its metabolite, 8-oxo-O6-benzylguanine. J Clin Pharmacol 43(8):881–893

    Article  CAS  PubMed  Google Scholar 

  35. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354

    Article  CAS  PubMed  Google Scholar 

  36. Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 6(6):695–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent sub-pathways for repair of oxidative DNA damage. Antioxid Redox Signal 14(12):2491–2507. Epub 2010/07/24

    Google Scholar 

  38. Sobol RW (2009) Temozolomide. In: Schwab M (ed) Encyclopedia of cancer, 2nd edn. Springer, Berlin Heidelberg, pp 2928–2933

    Chapter  Google Scholar 

  39. Wilson SH, Kunkel TA (2000) Passing the baton in base excision repair. Nat Struct Biol 7(3):176–178

    Article  CAS  PubMed  Google Scholar 

  40. Gagne JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E et al (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 40(16):7788–7805. Epub 2012/06/07

    Google Scholar 

  41. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13(7):411–424. Epub 2012/06/21

    Google Scholar 

  42. Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JA, Larsen AK et al PARPs and the DNA damage response. Carcinogenesis 33(8):1433–1440. Epub 2012/03/21

    Google Scholar 

  43. Roos WP, Kaina B (2012) DNA damage-induced apoptosis: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett In Press. Epub 2012/01/21

    Google Scholar 

  44. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  CAS  PubMed  Google Scholar 

  45. De Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13(7):768–785. Epub 1999/04/10

    Google Scholar 

  46. Wood RD (1996) DNA repair in eukaryotes. Annu Rev Biochem 65:135–167. Epub 1996/01/01

    Google Scholar 

  47. Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18(1):64–72. Epub 2008/01/02

    Google Scholar 

  48. Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci USA 103(8):2588–2593

    Article  CAS  PubMed  Google Scholar 

  49. Barakat K, Gajewski M, Tuszynski JA (2012) DNA repair inhibitors: the next major step to improve cancer therapy. Curr Top Med Chem 12(12):1376–1390. Epub 2012/07/17

    Google Scholar 

  50. Postel-Vinay S, Vanhecke E, Olaussen KA, Lord CJ, Ashworth A, Soria JC (2012) The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nat Rev Clin Oncol 9(3):144–155. Epub 2012/02/15

    Google Scholar 

  51. Bhagwat NR, Roginskaya VY, Acquafondata MB, Dhir R, Wood RD, Niedernhofer LJ (2009) Immunodetection of DNA repair endonuclease ERCC1-XPF in human tissue. Cancer Res 69(17):6831–6838. Epub 2009/09/03

    Google Scholar 

  52. Niedernhofer LJ, Bhagwat N, Wood RD. ERCC1 and non-small-cell lung cancer. N Engl J Med. 2007;356(24):2538-40; author reply 40-1. Epub 2007/06/15

    Google Scholar 

  53. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA et al (2010) GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9(4):662–669. Epub 2010/02/09

    Google Scholar 

  54. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279(53):55117–55126

    Article  CAS  PubMed  Google Scholar 

  55. Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 711(1–2):61–72. Epub 2011/02/19

    Google Scholar 

  56. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M et al (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31(2):167–177. Epub 2008/07/29

    Google Scholar 

  57. Murray JM, Stiff T, Jeggo PA (2012) DNA double-strand break repair within heterochromatic regions. Biochem Soc Trans 40(1):173–178. Epub 2012/01/21

    Google Scholar 

  58. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3):196–207. Epub 2010/02/24

    Google Scholar 

  59. Jeggo PA, Geuting V, Lobrich M (2011) The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol 101(1):7–12. Epub 2011/07/09

    Google Scholar 

  60. Allen C, Ashley AK, Hromas R, Nickoloff JA (2011) More forks on the road to replication stress recovery. J Mol Cell Biol 3(1):4–12. Epub 2011/02/01

    Google Scholar 

  61. Kim H, D’Andrea AD (2012) Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 26(13):1393–1408. Epub 2012/07/04

    Google Scholar 

  62. Crossan GP, Patel KJ (2012) The fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. J Pathol 226(2):326–337. Epub 2011/10/01

    Google Scholar 

  63. Yuan F, Song L, Qian L, Hu JJ, Zhang Y (2010) Assembling an orchestra: Fanconi anemia pathway of DNA repair. Front Biosci 15:1131–1149. Epub 2010/06/03

    Google Scholar 

  64. Wang W (2008) A major switch for the Fanconi anemia DNA damage-response pathway. Nat Struct Mol Biol 15(11):1128–1130. Epub 2008/11/06

    Google Scholar 

  65. Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253. Epub 2011/03/25

    Google Scholar 

  66. Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689–698

    Article  CAS  PubMed  Google Scholar 

  67. Javle M, Curtin NJ (2011) The role of PARP in DNA repair and its therapeutic exploitation. Br J Cancer 105(8):1114–1122. Epub 2011/10/13

    Google Scholar 

  68. Sandhu SK, Yap TA, De Bono JS (2010) Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 46(1):9–20. Epub 2009/11/21

    Google Scholar 

  69. Peralta-Leal A, Rodriguez MI, Oliver FJ (2008) Poly(ADP-ribose)polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment. Clin Transl Oncol 10(6):318–323

    Article  CAS  PubMed  Google Scholar 

  70. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  71. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  72. Hendricks CA, Razlog M, Matsuguchi T, Goyal A, Brock AL, Engelward BP (2002) The S.cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair 1:645–659

    Article  CAS  PubMed  Google Scholar 

  73. Shaheen M, Allen C, Nickoloff JA, Hromas R (2011) Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117(23):6074–6082. Epub 2011/03/29

    Google Scholar 

  74. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH (2012) Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin Cancer Res 18(6):1655–1662. Epub 2012/02/01

    Google Scholar 

  76. Liu X, Shi Y, Maag DX, Palma JP, Patterson MJ, Ellis PA et al (2012) Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. Clin Cancer Res 18(2):510–523. Epub 2011/12/01

    Google Scholar 

  77. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376(9737):245–251. Epub 2010/07/09

    Google Scholar 

  78. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244. Epub 2010/07/09

    Google Scholar 

  79. Vollebergh MA, Jonkers J, Linn SC (2012) Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol Life Sci 69(2):223–245. Epub 2011/09/17

    Google Scholar 

  80. Bunting SF, Callen E, Kozak ML, Kim JM, Wong N, Lopez-Contreras AJ et al (2012) BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell 46(2):125–135. Epub 2012/03/27

    Google Scholar 

  81. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-Ribose) polymerase inhibition. Cancer Res 66(16):8109–8115

    Article  CAS  PubMed  Google Scholar 

  82. Yap TA, Sandhu SK, Carden CP, De Bono JS (2011) Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 61(1):31–49. Epub 2011/01/06

    Google Scholar 

  83. Williamson CT, Kubota E, Hamill JD, Klimowicz A, Ye R, Muzik H et al (2012) Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53. EMBO Mol Med 4(6):515–527. Epub 2012/03/15

    Google Scholar 

  84. Williamson CT, Muzik H, Turhan AG, Zamo A, O’Connor MJ, Bebb DG et al ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 9(2):347–57. Epub 2010/02/04

    Google Scholar 

  85. McEllin B, Camacho CV, Mukherjee B, Hahm B, Tomimatsu N, Bachoo RM et al (2010) PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res 70(13):5457–5464. Epub 2010/06/10

    Google Scholar 

  86. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS et al (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO molecular medicine 1(6–7):315–322. Epub 2010/01/06

    Google Scholar 

  87. Fraser M, Zhao H, Luoto KR, Lundin C, Coackley C, Chan N et al (2011) PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin Cancer Res 18(4):1015–1027. Epub 2011/11/25

    Google Scholar 

  88. Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR, Bhogal N et al (2010) Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res 70(20):8045–8054. Epub 2010/10/07

    Google Scholar 

  89. Liu SK, Coackley C, Krause M, Jalali F, Chan N, Bristow RG (2008) A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiother Oncol 88(2):258–268. Epub 2008/05/06

    Google Scholar 

  90. Chalmers AJ (2010) Overcoming resistance of glioblastoma to conventional cytotoxic therapies by the addition of PARP inhibitors. Anti-Cancer Agents Med Chem 10(7):520–533. Epub 2010/10/01

    Google Scholar 

  91. Chalmers AJ, Lakshman M, Chan N, Bristow RG (2010) Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets. Semin Radiat Oncol 20(4):274–281. Epub 2010/09/14

    Google Scholar 

  92. Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta-Leal A, Quiles-Perez R, Rodriguez-Vargas JM et al (2007) Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem 14(11):1179–1187

    Article  CAS  PubMed  Google Scholar 

  93. Giansanti V, Dona F, Tillhon M, Scovassi AI (2010) PARP inhibitors: new tools to protect from inflammation. Biochem pharmacol 80(12):1869–1877. Epub 2010/04/27

    Google Scholar 

  94. De la Lastra CA, Villegas I, Sanchez-Fidalgo S (2007) Poly(ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications. Curr Pharm Des 13(9):933–962. Epub 2007/04/14

    Google Scholar 

  95. Wedge SR, Porteous JK, Newlands ES (1996) 3-Aminobenzamide and/or O6-benzylguanine evaluated as an adjuvant to temozolomide or BCNU treatment in cell lines of variable mismatch repair status and O6-alkylguanine-DNA alkyltransferase activity. Br J Cancer 74(7):1030–1036. Epub 1996/10/01

    Google Scholar 

  96. Tentori L, Turriziani M, Franco D, Serafino A, Levati L, Roy R et al (1999) Treatment with temozolomide and poly(ADP-ribose) polymerase inhibitors induces early apoptosis and increases base excision repair gene transcripts in leukemic cells resistant to triazene compounds. Leukemia 13(6):901–909

    Article  CAS  PubMed  Google Scholar 

  97. Tentori L, Leonetti C, Scarsella M, D’Amati G, Vergati M, Portarena I et al (2003) Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res 9(14):5370–5379

    CAS  PubMed  Google Scholar 

  98. Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S et al (2004) Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 10(3):881–889

    Article  CAS  PubMed  Google Scholar 

  99. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105(44):17079–17084. Epub 2008/10/31

    Google Scholar 

  100. Evers B, Drost R, Schut E, de Bruin M, van der Burg E, Derksen PW et al (2008) Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 14(12):3916–3925 Epub 2008/06/19

    Google Scholar 

  101. Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101(1):4–15

    Article  CAS  PubMed  Google Scholar 

  102. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. Epub 2010/01/29

    Google Scholar 

  103. Tang J, Goellner EM, Wang XW, Trivedi RN, St. Croix CM, Jelezcova E et al (2010) Bioenergetic metabolites regulate base excision repair-dependent cell death in response to DNA damage. Mol Cancer Res 8(1):67–79. Epub 2010/01/14

    Google Scholar 

  104. Dolan ME, Pegg AE (1997) O6-Benzylguanine and its role in chemotherapy. Clin Cancer Res 3(6):837–847. Epub 1997/06/01

    Google Scholar 

  105. Xu-Welliver M, Pegg AE (2002) Degradation of the alkylated form of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase. Carcinogenesis 23(5):823–30. Epub 2002/05/23

    Google Scholar 

  106. Pegg AE (2011) Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 24(5):618–639. Epub 2011/04/07

    Google Scholar 

  107. Middleton MR, Kelly J, Thatcher N, Donnelly DJ, McElhinney RS, McMurry TB et al (2000) O(6)-(4-bromothenyl)guanine improves the therapeutic index of temozolomide against A375 M melanoma xenografts. Int J Cancer 85(2):248–252. Epub 2000/01/11

    Google Scholar 

  108. Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5(1):102–114. Epub 2011/11/30

    Google Scholar 

  109. Khan O, Middleton MR (2007) The therapeutic potential of O6-alkylguanine DNA alkyltransferase inhibitors. Expert Opin Investig Drugs 16(10):1573–1584. Epub 2007/10/10

    Google Scholar 

  110. Davis BM, Roth JC, Liu L, Xu-Welliver M, Pegg AE, Gerson SL (1999) Characterization of the P140 K, PVP(138-140)MLK, and G156A O6-methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy. Hum Gene Ther 10(17):2769–2778. Epub 1999/12/10

    Google Scholar 

  111. Chen T, Stephens PA, Middleton FK, Curtin NJ (2011) Targeting the S and G2 checkpoint to treat cancer. Drug Discovery Today 17(5–6):194–202. Epub 2011/12/24

    Google Scholar 

  112. Zenvirt S, Kravchenko-Balasha N, Levitzki A (2010) Status of p53 in human cancer cells does not predict efficacy of CHK1 kinase inhibitors combined with chemotherapeutic agents. Oncogene 29(46):6149–6159. Epub 2010/08/24

    Google Scholar 

  113. Cho SH, Toouli CD, Fujii GH, Crain C, Parry D (2004) Chk1 is essential for tumor cell viability following activation of the replication checkpoint. Cell Cycle 4(1):131–139. Epub 2004/11/13

    Google Scholar 

  114. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J et al (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7(2):195–201

    Article  CAS  PubMed  Google Scholar 

  115. Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaiff WT et al (2012) Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest 122(4):1541–1552. Epub 2012/03/27

    Google Scholar 

  116. Ma CX, Janetka JW, Piwnica-Worms H (2010) Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17(2):88–96. Epub 2010/11/23

    Google Scholar 

  117. Mitchell C, Park M, Eulitt P, Yang C, Yacoub A, Dent P (2010) Poly(ADP-ribose) polymerase 1 modulates the lethality of CHK1 inhibitors in carcinoma cells. Mol Pharmacol 78(5):909–917. Epub 2010/08/11

    Google Scholar 

  118. Sausville EA, LoRusso P, Carducci MA, Barker PN, Agbo F, Oakes P et al (2011) Phase I dose-escalation study of AZD7762 in combination with gemcitabine (gem) in patients (pts) with advanced solid tumors. J Clin Oncol 29(suppl):abstr 3058

    Google Scholar 

  119. McNeely S, Conti C, Sheikh T, Patel H, Zabludoff S, Pommier Y et al (2010) Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell Cycle 9(5):995–1004. Epub 2010/02/18

    Google Scholar 

  120. Sorensen CS, Syljuasen RG (2012) Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 40(2):477–486. Epub 2011/09/23

    Google Scholar 

  121. Toledo LI, Murga M, Fernandez-Capetillo O (2011) Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs. Mol Oncol 5(4):368–373. Epub 2011/08/09

    Google Scholar 

  122. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T (1996) The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Nat Acad Sci 93(17):8919–8923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Izumi T, Brown DB, Naidu CV, Bhakat KK, Macinnes MA, Saito H et al (2005) Two essential but distinct functions of the mammalian abasic endonuclease. Proc Natl Acad Sci USA 102(16):5739–5743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A et al (2003) Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 4(2):145–153

    Article  CAS  PubMed  Google Scholar 

  125. Fishel ML, He Y, Reed AM, Chin-Sinex H, Hutchins GD, Mendonca MS et al (2008) Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst) 7(2):177–186. Epub 2007/11/03

    Google Scholar 

  126. Bapat A, Fishel ML, Kelley MR (2009) Going ape as an approach to cancer therapeutics. Antioxid Redox Signal 11(3):651–668. Epub 2008/08/22

    Google Scholar 

  127. Abbotts R, Madhusudan S (2010) Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 36(5):425–435. Epub 2010/01/09

    Google Scholar 

  128. Phillps JH, Brown DM, Grossman L (1996) The efficiency of induction of mutations by hydroxylamine. J Mol Biol 21(3):405–419. Epub 1966/11/28

    Google Scholar 

  129. Goldszer F, Tindell GL, Walle UK, Walle T (1981) Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol. Res Commun Chem Pathol Pharmacol 34(2):193–205. Epub 1981/11/01

    Google Scholar 

  130. Beger RD, Bolton PH (1998) Structures of apurinic and apyrimidinic sites in duplex DNAs. J Biol Chem 273(25):15565–15573. Epub 1998/06/23

    Google Scholar 

  131. Talpaert-Borle M, Liuzzi M (1983) Reaction of apurinic/apyrimidinic sites with [14C] methoxyamine. A method for the quantitative assay of AP sites in DNA. Biochim Biophys Acta 740(4):410–416. Epub 1983/09/09

    Google Scholar 

  132. Liu L, Taverna P, Whitacre CM, Chatterjee S, Gerson SL (1999) Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and -proficient colon cancer cells to methylating agents. Clin Cancer Res 5(10):2908–2917

    CAS  PubMed  Google Scholar 

  133. Goellner EM, Grimme B, Brown AR, Lin YC, Wang XH, Sugrue KF et al (2011) Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res 71(6):2308–2317. Epub 2011/03/17

    Google Scholar 

  134. Tang JB, Svilar D, Trivedi RN, Wang XH, Goellner EM, Moore B et al (2011) N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neurooncology 13(5):471–486. Epub 2011/03/08

    Google Scholar 

  135. Taverna P, Liu L, Hwang HS, Hanson AJ, Kinsella TJ, Gerson SL (2001) Methoxyamine potentiates DNA single strand breaks and double strand breaks induced by temozolomide in colon cancer cells. Mutat Res 485(4):269–281

    Article  CAS  PubMed  Google Scholar 

  136. Taverna P, Hwang HS, Schupp JE, Radivoyevitch T, Session NN, Reddy G et al (2003) Inhibition of base excision repair potentiates iododeoxyuridine-induced cytotoxicity and radiosensitization. Cancer Res 63(4):838–846. Epub 2003/02/20

    Google Scholar 

  137. Liu L, Yan L, Donze JR, Gerson SL (2003) Blockage of abasic site repair enhances antitumor efficacy of 1,3-bis-(2-chloroethyl)-1-nitrosourea in colon tumor xenografts. Mol Cancer Ther 2(10):1061–1066. Epub 2003/10/28

    Google Scholar 

  138. She M, Pan I, Sun L, Yeung SC (2005) Enhancement of manumycin A-induced apoptosis by methoxyamine in myeloid leukemia cells. Leukemia 19(4):595–602. Epub 2005/03/04

    Google Scholar 

  139. Bulgar AD, Snell M, Donze JR, Kirkland EB, Li L, Yang S et al (2010) Targeting base excision repair suggests a new therapeutic strategy of fludarabine for the treatment of chronic lymphocytic leukemia. Leukemia 24(10):1795–1799. Epub 2010/09/03

    Google Scholar 

  140. Kinsella TJ (2009) Coordination of DNA mismatch repair and base excision repair processing of chemotherapy and radiation damage for targeting resistant cancers. Clin Cancer Res 15(6):1853–1859. Epub 2009/02/26

    Google Scholar 

  141. Vermeulen C, Verwijs-Janssen M, Cramers P, Begg AC, Vens C (2007) Role for DNA polymerase beta in response to ionizing radiation. DNA Repair (Amst) 6(2):202–212

    Article  CAS  Google Scholar 

  142. Bulgar AD, Weeks LD, Miao Y, Yang S, Xu Y, Guo C et al (2012) Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair. Cell Death Dis 3:e252. Epub 2012/01/13

    Google Scholar 

  143. Srinivasan A, Wang L, Cline CJ, Xie Z, Sobol RW, Xie XQ et al (2012) Identification and characterization of human apurinic/apyrimidinic endonuclease-1 inhibitors. Biochemistry 51(31):6246–6259. Epub 2012/07/14

    Google Scholar 

  144. Rai G, Vyjayanti VN, Dorjsuren D, Simeonov A, Jadhav A, Wilson DM 3rd et al (2012) Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors. J Med chem 55(7):3101–3112. Epub 2012/03/30

    Google Scholar 

  145. Bapat A, Glass LS, Luo M, Fishel ML, Long EC, Georgiadis MM et al (2010) Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J Pharmacol Exp Ther 334(3):988–998. Epub 2010/05/28

    Google Scholar 

  146. Zawahir Z, Dayam R, Deng J, Pereira C, Neamati N (2009) Pharmacophore guided discovery of small-molecule human apurinic/apyrimidinic endonuclease 1 inhibitors. J Med Chem 52(1):20–32

    Article  CAS  PubMed  Google Scholar 

  147. Al-Safi RI, Odde S, Shabaik Y, Neamati N (2012) Small-molecule inhibitors of APE1 DNA repair function: an overview. Curr Mol Pharmacol 5(1):14–35. Epub 2011/11/30

    Google Scholar 

  148. Sultana R, McNeill DR, Abbotts R, Mohammed MZ, Zdzienicka MZ, Qutob H et al (2012) Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int J Cancer 131(10):2433–2444. Epub 2012/03/02

    Google Scholar 

  149. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870. Epub 2005/04/15

    Google Scholar 

  150. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913. Epub 2005/04/15

    Google Scholar 

  151. Peasland A, Wang LZ, Rowling E, Kyle S, Chen T, Hopkins A et al (2011) Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 105(3):372–381. Epub 2011/07/07

    Google Scholar 

  152. Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S et al (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18(6):721–727. Epub 2011/05/10

    Google Scholar 

  153. Rainey MD, Charlton ME, Stanton RV, Kastan MB (2008) Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 68(18):7466–7474. Epub 2008/09/17

    Google Scholar 

  154. Vens C, Begg AC (2010) Targeting base excision repair as a sensitization strategy in radiotherapy. Semin Radiat Oncol 20(4):241–249. Epub 2010/09/14

    Google Scholar 

  155. O’Connor MJ, Martin NM, Smith GC (2007) Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene 26(56):7816–7824. Epub 2007/12/11

    Google Scholar 

  156. Nutley BP, Smith NF, Hayes A, Kelland LR, Brunton L, Golding BT et al (2005) Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026. Br J Cancer 93(9):1011–1018. Epub 2005/10/27

    Google Scholar 

  157. Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ et al (2006) Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 66(10):5354–5362. Epub 2006/05/19

    Google Scholar 

  158. Quanz M, Berthault N, Roulin C, Roy M, Herbette A, Agrario C et al (2009) Small-molecule drugs mimicking DNA damage: a new strategy for sensitizing tumors to radiotherapy. Clin Cancer Res 15(4):1308–1316. Epub 2009/02/05

    Google Scholar 

  159. Munck JM, Batey MA, Zhao Y, Jenkins H, Richardson CJ, Cano C et al (2012) Chemosensitization of cancer cells by KU-0060648, A Dual Inhibitor of DNA-PK and PI-3 K. Mol Cancer Ther. Epub 2012/05/12

    Google Scholar 

  160. Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW (2003) Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 63(18):6008–6015. Epub 2003/10/03

    Google Scholar 

  161. Azad A, Jackson S, Cullinane C, Natoli A, Neilsen PM, Callen DF et al (2011) Inhibition of DNA-dependent protein kinase induces accelerated senescence in irradiated human cancer cells. Mol Cancer Res 9(12):1696–1707. Epub 2011/10/20

    Google Scholar 

  162. Gurley KE, Kemp CJ (2001) Synthetic lethality between mutation in ATM and DNA-PK(cs) during murine embryogenesis. Curr Biol 11(3):191–194. Epub 2001/03/07

    Google Scholar 

  163. Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI et al (1998) Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9(3):355–366. Epub 1998/10/13

    Google Scholar 

  164. Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S et al (2009) EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 69(10):4252–4259. Epub 2009/05/14

    Google Scholar 

  165. Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K (2007) Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67(3):1046–1053. Epub 2007/02/07

    Google Scholar 

  166. Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J et al (2010) The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst) 9(8):889–897. Epub 2010/07/10

    Google Scholar 

  167. Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF et al (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 8(10):2894–2902. Epub 2009/10/08

    Google Scholar 

  168. Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J et al (2008) Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther 7(7):1772–1781. Epub 2008/07/23

    Google Scholar 

  169. Zaidi SH, Huddart RA, Harrington KJ (2009) Novel targeted radiosensitisers in cancer treatment. Curr Drug Discov Technol 6(2):103–134. Epub 2009/06/13

    Google Scholar 

  170. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L et al (2005) Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 280(35):31182–31189. Epub 2005/07/08

    Google Scholar 

  171. Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ et al (2006) Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res 66(22):10861–10869. Epub 2006/11/09

    Google Scholar 

  172. Sinnberg T, Lasithiotakis K, Niessner H, Schittek B, Flaherty KT, Kulms D et al (2009) Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol 129(6):1500–1515. Epub 2008/12/17

    Google Scholar 

  173. Chen L, Han L, Shi Z, Zhang K, Liu Y, Zheng Y et al (2012) LY294002 enhances cytotoxicity of temozolomide in glioma by down-regulation of the PI3K/Akt pathway. Mol Med Rep 5(2):575–579. Epub 2011/11/17

    Google Scholar 

  174. Pal J, Fulciniti M, Nanjappa P, Buon L, Tai YT, Tassone P et al (2012) Targeting PI3K and RAD51 in Barrett’s adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth. Cancer Genomics Proteomics 9(2):55–66. Epub 2012/03/09

    Google Scholar 

  175. Kimbung S, Biskup E, Johansson I, Aaltonen K, Ottosson-Wadlund A, Gruvberger-Saal S et al (2012) Co-targeting of the PI3K pathway improves the response of BRCA1 deficient breast cancer cells to PARP1 inhibition. Cancer Lett 319(2):232–241. Epub 2012/01/24

    Google Scholar 

  176. Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7(5):323–334 Epub 2006/04/25

    Google Scholar 

  177. Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12(7):439–452. Epub 2011/06/24

    Google Scholar 

  178. Frezza M, Schmitt S, Dou QP (2011) Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr Top Med Chem 11(23):2888–2905. Epub 2011/08/10

    Google Scholar 

  179. Ruschak AM, Slassi M, Kay LE, Schimmer AD (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103(13):1007–1017. Epub 2011/05/25

    Google Scholar 

  180. Galli M, Van Gool F, Rongvaux A, Andris F, Leo O (2010) The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer. Cancer Res 70(1):8–11. Epub 2009/12/24

    Google Scholar 

  181. Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C (2006) Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol 13(7):661–662. Epub 2006/06/20

    Google Scholar 

  182. Berger F, Lau C, Dahlmann M, Ziegler M (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280(43):36334–36341

    Article  CAS  PubMed  Google Scholar 

  183. Watson M, Roulston A, Belec L, Billot X, Marcellus R, Bedard D et al (2009) The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29(21):5872–5888. Epub 2009/08/26

    Google Scholar 

  184. Fleischer TC, Murphy BR, Flick JS, Terry-Lorenzo RT, Gao ZH, Davis T et al Chemical proteomics identifies Nampt as the target of CB30865, an orphan cytotoxic compound. Chem Biol 17(6):659–664. Epub 2010/07/09

    Google Scholar 

  185. Olesen UH, Christensen MK, Bjorkling F, Jaattela M, Jensen PB, Sehested M et al (2008) Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochem Biophys Res Commun 367(4):799–804

    Article  CAS  PubMed  Google Scholar 

  186. Zhang RY, Qin Y, Lv XQ, Wang P, Xu TY, Zhang L et al (2011) A fluorometric assay for high-throughput screening targeting nicotinamide phosphoribosyltransferase. Anal Biochem 412(1):18–25. Epub 2011/01/08

    Google Scholar 

  187. Khan JA, Tao X, Tong L (2006) Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol 13(7):582–588

    Article  CAS  PubMed  Google Scholar 

  188. Hasmann M, Schemainda I (2003) FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 63(21):7436–7442

    CAS  PubMed  Google Scholar 

  189. Billington RA, Genazzani AA, Travelli C, Condorelli F (2008) NAD depletion by FK866 induces autophagy. Autophagy 4(3):385–387. Epub 2008/01/30

    Google Scholar 

  190. Pogrebniak A, Schemainda I, Azzam K, Pelka-Fleischer R, Nussler V, Hasmann M (2006) Chemopotentiating effects of a novel NAD biosynthesis inhibitor, FK866, in combination with antineoplastic agents. Eur J Med Res 11(8):313–321

    CAS  PubMed  Google Scholar 

  191. Bi TQ, Che XM, Liao XH, Zhang DJ, Long HL, Li HJ et al (2011) Overexpression of nampt in gastric cancer and chemopotentiating effects of the nampt inhibitor FK866 in combination with fluorouracil. Oncol Rep 26(5):1251–1257. Epub 2011/07/12

    Google Scholar 

  192. Travelli C, Drago V, Maldi E, Kaludercic N, Galli U, Boldorini R et al (2011) Reciprocal potentiation of the antitumoral activities of FK866, an inhibitor of nicotinamide phosphoribosyltransferase, and etoposide or cisplatin in neuroblastoma cells. J Pharmacol Exp Ther 338(3):829–840. Epub 2011/06/21

    Google Scholar 

  193. Zoppoli G, Cea M, Soncini D, Fruscione F, Rudner J, Moran E et al (2010) Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells. Exp Hematol 38(11):979–988. Epub 2010/08/11

    Google Scholar 

  194. Olesen UH, Thougaard AV, Jensen PB, Sehested M (2010) A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor. Mol Cancer Ther 9(6):1609–1617

    Article  CAS  PubMed  Google Scholar 

  195. Goellner EM, Svilar D, Almeida KH, Sobol RW (2012) Targeting DNA polymerase β for therapeutic intervention. Curr Mol Pharmacol 5(1):68–87. Epub 2011/11/30

    Google Scholar 

  196. Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14(5):1291–1295. Epub 2008/03/05

    Google Scholar 

  197. Orelli B, McClendon TB, Tsodikov OV, Ellenberger T, Niedernhofer LJ, Scharer OD (2010) The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J Biol Chem 285(6):3705–3712. Epub 2009/11/27

    Google Scholar 

  198. Su Y, Orelli B, Madireddy A, Niedernhofer LJ, Scharer OD (2012) Multiple DNA binding domains mediate the function of the ERCC1-XPF protein in nucleotide excision repair. J Biol Chem 287(26):21846–21855. Epub 2012/05/02

    Google Scholar 

  199. Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R et al (2007) Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. Embo J 26(22):4768–4776. Epub 2007/10/20

    Google Scholar 

  200. Sijbers AM, van der Spek PJ, Odijk H, van den Berg J, van Duin M, Westerveld A et al (1996) Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Res 24(17):3370–3380. Epub 1996/09/01

    Google Scholar 

  201. Barakat KH, Torin Huzil J, Luchko T, Jordheim L, Dumontet C, Tuszynski J (2009) Characterization of an inhibitory dynamic pharmacophore for the ERCC1-XPA interaction using a combined molecular dynamics and virtual screening approach. J Mol Graph Model 28(2):113–130. Epub 2009/05/29

    Google Scholar 

  202. Lee-Kwon W, Park D, Bernier M (1998) Involvement of the ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin. Biochem J 331 (Pt 2):591–597. Epub 1998/06/11

    Google Scholar 

  203. Yadav A, Kumar B, Teknos TN, Kumar P (2011) Sorafenib enhances the antitumor effects of chemoradiation treatment by downregulating ERCC-1 and XRCC-1 DNA repair proteins. Mol Cancer Ther 10(7):1241–1251. Epub 2011/05/10

    Google Scholar 

  204. Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF et al (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276(47):43487–43490

    Article  CAS  PubMed  Google Scholar 

  205. Lange SS, Takata K, Wood RD (2011) DNA polymerases and cancer. Nat Rev Cancer 11(2):96–110. Epub 2011/01/25

    Google Scholar 

  206. Bebenek K, Kunkel TA (2004) Functions of DNA polymerases. Adv Protein Chem 69:137–65. Epub 2004/12/14

    Google Scholar 

  207. Wilson SH, Beard WA, Shock DD, Batra VK, Cavanaugh NA, Prasad R et al (2010) Base excision repair and design of small molecule inhibitors of human DNA polymerase beta. Cell Mol Life Sci 67(21):3633–3647. Epub 2010/09/17

    Google Scholar 

  208. Barakat KH, Gajewski MM, Tuszynski JA (2012) DNA polymerase beta (pol beta) inhibitors: a comprehensive overview. Drug discovery today 17(15–16):913–920. Epub 2012/05/09

    Google Scholar 

  209. Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ, Taylor S et al (2010) A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown. Cancer Res 70(7):2984–2993. Epub 2010/03/18

    Google Scholar 

  210. Higgins GS, Harris AL, Prevo R, Helleday T, McKenna WG, Buffa FM (2010) Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 1(3):175–184. Epub 2010/08/12

    Google Scholar 

  211. Lemee F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire MJ, Bieth A et al (2010) DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc Natl Acad Sci USA 107(30):13390–13395. Epub 2010/07/14

    Google Scholar 

  212. Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA (1996) A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384(6604):87–92. Epub 1996/11/07

    Google Scholar 

  213. Engelward BP, Allan JM, Dreslin AJ, Kelly JD, Wu MM, Gold B et al (1998) A chemical and genetic approach together define the biological consequences of 3-methyladenine lesions in the mammalian genome. J Biol Chem 273(9):5412–5418

    Article  CAS  PubMed  Google Scholar 

  214. Noren Hooten N, Kompaniez K, Barnes J, Lohani A, Evans MK (2011) Poly(ADP-ribose) polymerase 1 (PARP-1) binds to 8-oxoguanine-DNA glycosylase (OGG1). J Biol Chem 286(52):44679–44690. Epub 2011/11/08

    Google Scholar 

  215. Endres M, Biniszkiewicz D, Sobol RW, Harms C, Ahmadi M, Lipski A et al (2004) Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest 113(12):1711–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  216. Kruman II, Schwartz E, Kruman Y, Cutler RG, Zhu X, Greig NH et al (2004) Suppression of uracil-DNA glycosylase induces neuronal apoptosis. J Biol Chem 279(42):43952–43960

    Article  CAS  PubMed  Google Scholar 

  217. Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N et al (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4(10):1023–1028. Epub 2003/09/06

    Google Scholar 

  218. Wang Z, Mosbaugh DW. Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. 1989;264(2):1163-71. Epub 1989/01/15

    Google Scholar 

  219. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563. Epub 2009/07/25

    Google Scholar 

  220. Shabek N, Ciechanover A (2010) Degradation of ubiquitin: the fate of the cellular reaper. Cell Cycle 9(3):523–530. Epub 2010/01/29

    Google Scholar 

  221. Mattern MR, Wu J, Nicholson B (2012) Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors vs surgical strikes with E1, E2, E3, or DUB inhibitors. Biochim Biophys Acta 1823(11):2014–2021. Epub 2012/05/23

    Google Scholar 

  222. Opferman JT, Green DR (2010) DUB-le trouble for cell survival. Cancer Cell 17(2):117–119. Epub 2010/02/18

    Google Scholar 

  223. Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ et al (2011) Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol 18(11):1401–1412. Epub 2011/11/29

    Google Scholar 

  224. Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ (2010) Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res 70(22):9265–9276. Epub 2010/11/04

    Google Scholar 

  225. Kramer HB, Nicholson B, Kessler BM, Altun M (2012) Detection of ubiquitin-proteasome enzymatic activities in cells: application of activity-based probes to inhibitor development. Biochim Biophys Acta 1823(11):2029–2037. Epub 2012/05/23

    Google Scholar 

  226. Seiberlich V, Goldbaum O, Zhukareva V, Richter-Landsberg C (2012) The small molecule inhibitor PR-619 of deubiquitinating enzymes affects the microtubule network and causes protein aggregate formation in neural cells: implications for neurodegenerative diseases. Biochim Biophys Acta 1823(11):2057–2068. Epub 2012/05/09

    Google Scholar 

  227. Chernikova SB, Game JC, Brown JM (2012) Inhibiting homologous recombination for cancer therapy. Cancer Biol Ther 13(2):61–68. Epub 2012/02/18

    Google Scholar 

  228. Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV (2011) Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS chemical biology 6(6):628–635. Epub 2011/03/25

    Google Scholar 

  229. Quiros S, Roos WP, Kaina B (2011) Rad51 and BRCA2–New molecular targets for sensitizing glioma cells to alkylating anticancer drugs. PLoS ONE 6(11):e27183. Epub 2011/11/11

    Google Scholar 

  230. Short SC, Giampieri S, Worku M, Alcaide-German M, Sioftanos G, Bourne S et al (2011) Rad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor-derived cells. Neurooncology 13(5):487–499. Epub 2011/03/03

    Google Scholar 

  231. Sprong D, Janssen HL, Vens C, Begg AC (2005) Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int J Radiat Oncol Biol Phys 64(2):562–572. Epub 2005/12/14

    Google Scholar 

  232. Neijenhuis S, Verwijs-Janssen M, van den Broek LJ, Begg AC, Vens C (2010) Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}. Cancer Res 70(21):8706–8714. Epub 2010/10/28

    Google Scholar 

  233. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N et al (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620. Epub 2011/09/06

    Google Scholar 

  234. Brochu G, Duchaine C, Thibeault L, Lagueux J, Shah GM, Poirier GG (1994) Mode of action of poly(ADP-ribose) glycohydrolase. Biochim Biophys Acta 1219(2):342–350

    Article  CAS  PubMed  Google Scholar 

  235. Affar EB, Germain M, Winstall E, Vodenicharov M, Shah RG, Salvesen GS et al (2001) Caspase-3-mediated processing of poly(ADP-ribose) glycohydrolase during apoptosis. J Biol Chem 276(4):2935–42. Epub 2000/10/29

    Google Scholar 

  236. Li Q, Li M, Wang YL, Fauzee NJ, Yang Y, Pan J et al (2012) RNA interference of PARG could inhibit the metastatic potency of colon carcinoma cells via PI3-kinase/Akt pathway. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 29(3–4):361–72. Epub 2012/04/18

    Google Scholar 

  237. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC et al (2004) Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci USA 101(51):17699–17704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Ying W, Swanson RA (2000) The poly(ADP-ribose) glycohydrolase inhibitor gallotannin blocks oxidative astrocyte death. Neuroreport 11(7):1385–8. Epub 2000/06/07

    Google Scholar 

  239. Sun Y, Zhang T, Wang B, Li H, Li P (2012) Tannic acid, an inhibitor of poly(ADP-ribose) glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin. Anti-cancer drugs 23(9):979–990. Epub 2012/07/13

    Google Scholar 

  240. Formentini L, Arapistas P, Pittelli M, Jacomelli M, Pitozzi V, Menichetti S et al (2008) Mono-galloyl glucose derivatives are potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors and partially reduce PARP-1-dependent cell death. Br J Pharmacol 155(8):1235–1249. Epub 2008/09/23

    Google Scholar 

  241. Cuzzocrea S, Mazzon E, Genovese T, Crisafulli C, Min WK, Di Paola R et al (2007) Role of poly(ADP-ribose) glycohydrolase in the development of inflammatory bowel disease in mice. Free Radic Biol Med 42(1):90–105

    Article  CAS  PubMed  Google Scholar 

  242. Cuzzocrea S, Genovese T, Mazzon E, Crisafulli C, Min W, Di Paola R et al (2006) Poly(ADP-ribose) glycohydrolase activity mediates post-traumatic inflammatory reaction after experimental spinal cord trauma. J Pharmacol Exp Ther 319(1):127–138

    Article  CAS  PubMed  Google Scholar 

  243. Cuzzocrea S, Di Paola R, Mazzon E, Cortes U, Genovese T, Muia C et al (2005) PARG activity mediates intestinal injury induced by splanchnic artery occlusion and reperfusion. Faseb J 19(6):558–566

    Article  PubMed  Google Scholar 

  244. Falsig J, Christiansen SH, Feuerhahn S, Burkle A, Oei SL, Keil C et al (2004) Poly(ADP-ribose) glycohydrolase as a target for neuroprotective intervention: assessment of currently available pharmacological tools. Eur J Pharmacol 497(1):7–16

    Article  CAS  PubMed  Google Scholar 

  245. Lu XC, Massuda E, Lin Q, Li W, Li JH, Zhang J (2003) Post-treatment with a novel PARG inhibitor reduces infarct in cerebral ischemia in the rat. Brain Res 978(1–2):99–103. Epub 2003/07/02

    Google Scholar 

  246. Steffen JD, Coyle DL, Damodaran K, Beroza P, Jacobson MK (2011) Discovery and structure-activity relationships of modified salicylanilides as cell permeable inhibitors of poly(ADP-ribose) glycohydrolase (PARG). J Med Chem 54(15):5403–5413. Epub 2011/06/23

    Google Scholar 

  247. Okita N, Ashizawa D, Ohta R, Abe H, Tanuma S (2010) Discovery of novel poly(ADP-ribose) glycohydrolase inhibitors by a quantitative assay system using dot-blot with anti-poly(ADP-ribose). Biochem Biophys Res Commun 392(4):485–489. Epub 2010/01/19

    Google Scholar 

  248. Kaye SB, Lubinski J, Matulonis U, Ang JE, Gourley C, Karlan BY et al (2012) Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 30(4):372–379. Epub 2011/12/29

    Google Scholar 

  249. Rajan A, Carter CA, Kelly RJ, Gutierrez M, Kummar S, Szabo E et al (2012) A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin Cancer Res 18(8):2344–2351. Epub 2012/03/01

    Google Scholar 

  250. van Vuurden DG, Hulleman E, Meijer OL, Wedekind LE, Kool M, Witt H et al (2011) PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2(12):984–996. Epub 2011/12/21

    Google Scholar 

  251. Clark CC, Weitzel JN, O’Connor TR (2012) Enhancement of synthetic lethality via combinations of ABT-888, a PARP inhibitor, and carboplatin in vitro and in vivo using BRCA1 and BRCA2 isogenic models. Mol Cancer Ther 11(9):1948–1958. Epub 2012/07/11

    Google Scholar 

  252. Kummar S, Chen A, Ji J, Zhang Y, Reid JM, Ames M et al (2011) Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res 71(17):5626–5634. Epub 2011/07/29

    Google Scholar 

  253. Palma JP, Wang YC, Rodriguez LE, Montgomery D, Ellis PA, Bukofzer G et al (2009) ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors. Clin Cancer Res 15(23):7277–7290. Epub 2009/11/26

    Google Scholar 

  254. Donawho CK, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD et al (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13(9):2728–2737. Epub 2007/05/03

    Google Scholar 

  255. Kummar S, Ji J, Morgan R, Lenz HJ, Puhalla SL, Belani CP et al (2012) A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin Cancer Res 18(6):1726–1734. Epub 2012/02/07

    Google Scholar 

  256. Barreto-Andrade JC, Efimova EV, Mauceri HJ, Beckett MA, Sutton HG, Darga TE et al (2011) Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Mol Cancer Ther 10(7):1185–1193. Epub 2011/05/17

    Google Scholar 

  257. Efimova EV, Mauceri HJ, Golden DW, Labay E, Bindokas VP, Darga TE et al (2010) Poly(ADP-ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors. Cancer Res 70(15):6277–6282. Epub 2010/07/09

    Google Scholar 

  258. Nowsheen S, Bonner JA, Yang ES (2011) The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother Oncol 99(3):331–338. Epub 2011/07/02

    Google Scholar 

  259. Apisarnthanarax N, Wood GS, Stevens SR, Carlson S, Chan DV, Liu L et al (2012) Phase I clinical trial of O6-benzylguanine and topical carmustine in the treatment of cutaneous T-cell lymphoma, mycosis fungoides type. Arch Dermatol 148(5):613–620. Epub 2012/01/18

    Google Scholar 

  260. Warren KE, Gururangan S, Geyer JR, McLendon RE, Poussaint TY, Wallace D et al (2012) A phase II study of O6-benzylguanine and temozolomide in pediatric patients with recurrent or progressive high-grade gliomas and brainstem gliomas: a pediatric brain tumor consortium study. J Neurooncol 106(3):643–649. Epub 2011/10/05

    Google Scholar 

  261. Kefford RF, Thomas NP, Corrie PG, Palmer C, Abdi E, Kotasek D et al (2009) A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma. Br J Cancer 100(8):1245–1249. Epub 2009/04/16

    Google Scholar 

  262. Watson AJ, Middleton MR, McGown G, Thorncroft M, Ranson M, Hersey P et al (2009) O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 100(8):1250–1256. Epub 2009/04/16

    Google Scholar 

  263. Ma Z, Yao G, Zhou B, Fan Y, Gao S, Feng X (2012) The Chk1 inhibitor AZD7762 sensitises p53 mutant breast cancer cells to radiation in vitro and in vivo. Mol Med Rep 6(4):897–903. Epub 2012/07/25

    Google Scholar 

  264. Montano R, Chung I, Garner KM, Parry D, Eastman A (2011) Preclinical development of the novel Chk1 inhibitor SCH900776 in combination with DNA-damaging agents and antimetabolites. Mol Cancer Ther 11(2):427–438. Epub 2011/12/29

    Google Scholar 

  265. Ferrao PT, Bukczynska EP, Johnstone RW, McArthur GA (2012) Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene 31(13):1661–1672. Epub 2011/08/16

    Google Scholar 

  266. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64(24):9152–9159. Epub 2004/12/18

    Google Scholar 

  267. Leahy JJ, Golding BT, Griffin RJ, Hardcastle IR, Richardson C, Rigoreau L et al (2004) Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorg Med Chem Lett 14(24):6083–6087

    Article  CAS  PubMed  Google Scholar 

  268. Devun F, Bousquet G, Biau J, Herbette A, Roulin C, Berger F et al (2012) Preclinical study of the DNA repair inhibitor Dbait in combination with chemotherapy in colorectal cancer. J gastroenterol 47(3):266–275. Epub 2011/11/10

    Google Scholar 

  269. Kim CH, Park SJ, Lee SH (2002) A targeted inhibition of DNA-dependent protein kinase sensitizes breast cancer cells following ionizing radiation. J Pharmacol Exp Ther 303(2):753–759. Epub 2002/10/22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Sobol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vens, C., Sobol, R.W. (2013). Targeting DNA Repair Pathways for Cancer Therapy. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_6

Download citation

Publish with us

Policies and ethics