The Warburg Effect and Beyond: Metabolic Dependencies for Cancer Cells

  • David M Hockenbery
  • Mark Tom
  • Cori Abikoff
  • Daciana Margineantu
Chapter
Part of the Cell Death in Biology and Diseases book series (CELLDEATH)

Abstract

Current definitions of cancer are best realized as a list of traits or hallmarks, such as tissue invasion, metastasis, cell-autonomous growth, and resistance to apoptosis. A recent update included deregulated cellular energetics as an emerging hallmark. However, debate about tumor cell metabolism occupied center stage in the pre-oncogene era. Over the last 15 years, direct links of oncogenes and tumor suppressor genes to cell metabolism have brought cancer metabolism to the forefront once again. Current tools provide much greater opportunities for probing metabolic differences between normal and cancer cells, in some cases revealing flux through unexpected metabolic pathways. Metabolic networks may also be truncated, presenting opportunities for selective growth inhibition or death by targeting non-redundant pathways in cancer cells. These “metabolic dependencies” are not likely to be associated with classically defined oncogenes or computationally derived drivers and thus may require novel strategies for discovery.

Keywords

Fermentation Lactate Respiration Retina Serine 

References

  1. 1.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedCrossRefGoogle Scholar
  2. 2.
    Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270PubMedGoogle Scholar
  3. 3.
    Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial function and enhanced glycolytic dependency in human tumor cells. Am J Physiol Cell Physiol 292(1):C125–C136PubMedCrossRefGoogle Scholar
  4. 4.
    Pedersen PL, Greenawalt JW, Chan TL, Morris HP (1970) A comparison of some ultrastructural and biochemical properties of mitochondria from Morris hepatomas 9618A, 7800, and 3924A. Cancer Res 30(11):2620–2626PubMedGoogle Scholar
  5. 5.
    Eboli ML, Paradies G, Galeotti T, Papa S (1977) Pyruvate transport in tumour-cell mitochondria. Biochim Biophys Acta 460(1):183–187PubMedCrossRefGoogle Scholar
  6. 6.
    Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Fresno Vara JA, Belda-Iniesta C, Gonzalez-Baron M, Cuezva JM (2005) Breast carcinomas fulfill the warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinog 26(12):2095–2104CrossRefGoogle Scholar
  7. 7.
    Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC (2002) The bioenergetics signature of cancer: a marker of tumor progression. Cancer Res 62(22):6674–6681PubMedGoogle Scholar
  8. 8.
    Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG (2004) The bioenergetics signature of lung carcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinog 25(7):1157–1163CrossRefGoogle Scholar
  9. 9.
    Sanchez-Cenizo L, Formentini L, Aldea M, Ortega AD, Garcia-Huerta P, Sanchez-Arago M, Cuezva JM (2010) Up-regulation of the ATPase inhibitory factor (IF1) of the mitochondrial H+ -ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem 285(33):25308–25313PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Crabtree JG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23(3):536–545PubMedCentralPubMedGoogle Scholar
  11. 11.
    Formentini L, Sanchez-Arago M, Sanchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell 45(6):731–742PubMedCrossRefGoogle Scholar
  12. 12.
    Sussman I, Erecinska M, Wilson DF (1980) Regulation of cellular energy metabolism: the crabtree effect. Biochim Biophys Acta 591(2):209–223PubMedCrossRefGoogle Scholar
  13. 13.
    Wu R, Racker E (1959) Regulatory mechanisms in carbohydrate metabolism. IV. Pasteur effect and crabtree effect in ascites tumor cells. J Biol Chem 234(5):1036–1041PubMedGoogle Scholar
  14. 14.
    Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the warburg effect. Proc Natl Acad Sci U S A 96(6):3047–3052PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Guppy M, Greiner E, Brand K (1993) The role of the crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212(1):95–99PubMedCrossRefGoogle Scholar
  16. 16.
    Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254(8):2669–2676PubMedGoogle Scholar
  17. 17.
    Vazquez A, Liu J, Zhou Y, Oltvai ZN (2010) Catabolic efficiency of aerobic glycolysis: the warburg effect revisited. BMC Syst Biol 6(5):58CrossRefGoogle Scholar
  18. 18.
    Boxer GE, Devlin TM (1961) Pathways of intracellular hydrogen transport. Science 134(3489):1495–1501PubMedCrossRefGoogle Scholar
  19. 19.
    Sato K, Takaya S, Imai F, Hatayama I, Ito N (1978) Different deviation patterns of carbohydrate-metabolizing enzymes in primary rat hepatomas induced by different chemical carcinogens. Cancer Res 38(9):3086–3093PubMedGoogle Scholar
  20. 20.
    Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43(7):969–980PubMedCrossRefGoogle Scholar
  21. 21.
    Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J (2009) Tyrosine phosphorylation inhibits PKM2 to promote the warburg effect and tumor growth. Sci Signal 2(97):ra73Google Scholar
  22. 22.
    Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184):181–186PubMedCrossRefGoogle Scholar
  23. 23.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233PubMedCrossRefGoogle Scholar
  24. 24.
    Presek P, Reinacher M, Eigenbrodt E (1988) Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by rous sarcoma virus. FEBS Lett 242(1):194–198PubMedCrossRefGoogle Scholar
  25. 25.
    Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334(6060):1278–1283PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499PubMedCrossRefGoogle Scholar
  27. 27.
    Gao X, Wang H, Yang JJ, Liu X, Liu ZR (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 45(5):598–609PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24(24):2784–2799PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94(13):6658–6663PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Morrish F, Neretti N, Sedivy JM, Hockenbery DM (2008) The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle 7(8):1054–1066PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM (2009) c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 28(27):2485–2491PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M, Kelleher J, VanGilst M, Hockenbery D (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285(47):36267–36274PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM, Simon MC (2010) Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1 alpha. Cancer Res 70(24):10351–10361PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835PubMedGoogle Scholar
  35. 35.
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7(1):77–85PubMedCrossRefGoogle Scholar
  36. 36.
    Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277(26):23111–23115PubMedCrossRefGoogle Scholar
  37. 37.
    Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277(31):27975–27981PubMedCrossRefGoogle Scholar
  38. 38.
    Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE (2004) HIF-1 alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23(9):1949–1956PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27(21):7381–7393PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Zhou QL, Jiang ZY, Holik J, Chawla A, Hagan GN, Leszyk J, Czech MP (2008) Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes. Biochem J 411(3):647–655PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Sakamoto K, Holman GD (2008) Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295(1):E29–E37PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH (1997) Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 41(3):533–535Google Scholar
  43. 43.
    Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3 beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65(22):10545–10554PubMedCrossRefGoogle Scholar
  45. 45.
    Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ (2005) Hypoxia-inducible factor-1 alpha and the glycolytic phenotype in tumors. Neoplasia 7(4):324–330PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB (2007) The transcription factor HIF-1 alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21(9):1037–1049PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899PubMedCrossRefGoogle Scholar
  48. 48.
    Landau BR, Laszlo J, Stengle J, Burk D (1958) Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst 21(3):475–483PubMedGoogle Scholar
  49. 49.
    Dwarakanath BS, Singh D, Banerji AK, Sarin R, Venkataramana NK, Jalali R, Vishwanath PN, Mohanti BK, Tripathi RP, Kalia VK, Jain V (2009) Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects. J Cancer Res Ther Suppl 1:S21–S26Google Scholar
  50. 50.
    Garber K (2010) Oncology’s energetic pipeline. Nat Biotechnol 28(9):888–891PubMedCrossRefGoogle Scholar
  51. 51.
    Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107(5):2037–2042PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Granchi C, Bertini S, Macchia M, Minutolo F (2010) Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr Med Chem 17(7):672–697PubMedCrossRefGoogle Scholar
  53. 53.
    Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075–1083PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Shutt DC, O’Dorisio MS, Aykin-Burns N, Spitz DR (2010) 2-deoxy-D-glucose induces oxidative stress and cell killing in human neuroblastoma cells. Cancer Biol Ther 9(11):8953–8961CrossRefGoogle Scholar
  55. 55.
    Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR (2009) Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 418(1):29–37PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD, Dang CV, Riggins GJ (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70(22):8981–8987PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Deberardinis RJ, Mancuso A, Daikhim E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 78(1):93–105CrossRefGoogle Scholar
  61. 61.
    Wise DR, De Berardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105(48):18782–18787PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 108(21):8674–8679PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Kaadige MR, Looper RE, Kamalanaadhan S, Ayer DE (2009) Glutamine-dependent anapleurosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc Natl Acad Sci U S A 106(35):14878–14883PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22(1):66–79PubMedCrossRefGoogle Scholar
  66. 66.
    Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 91(14):6379–6383PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777PubMedCrossRefGoogle Scholar
  68. 68.
    Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, Luo J, De Marzo AM, Isaacs WB (2005) Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 63(4):316–323PubMedCrossRefGoogle Scholar
  69. 69.
    Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9(3):230–234PubMedCrossRefGoogle Scholar
  70. 70.
    Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M (2011) Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 1807(6):726–734PubMedCrossRefGoogle Scholar
  71. 71.
    Harper ME, Antoniou A, Villalobos-Menuey E, Russo A, Trauger R, Vendemelio M, George A, Bartholomew R, Carlo D, Shaikh A, Kupperman J, Newell EW, Bespalov IA, Wallace SS, Liu Y, Rogers JR, Gibbs GL, Leahy JL, Camley RE, Melamede R, Newell MK (2002) Characterization of a novel metabolic strategy used by drug-resistant tumor cells. FASEB J 16(12):1550–1557PubMedCrossRefGoogle Scholar
  72. 72.
    Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H, Andreeff M (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120(1):142–156PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, Huang P, Sawyer SK, Fuerth B, Faubert B, Kalliomaki T, Elia A, Luo X, Nadeem V, Bungard D, Yalavarthi S, Growney JD, Wakeham A, Moolani Y, Silvester J, Ten AY, Bakker W, Tsuchihara K, Berger SL, Hill RP, Jones RG, Tsao M, Robinson MO, Thompson CB, Pan G, Mak TW (2011) Carnitine palmitoyltransferase 1 C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 25(10):1041–1051PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Niemen KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zilihardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503CrossRefGoogle Scholar
  75. 75.
    Pizer ES, Wood FD, Pasternack GR, Kuhajda FP (1996) Fatty acid synthase (FAS): a target for cytotoxic antimetabolites in HL60 promyelocytic leukemia cells. Cancer Res 56(4):745–751PubMedGoogle Scholar
  76. 76.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104(6):1777–1782PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6064):1040–1044PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Kriegler MP, Pawlowski AM, Livingston DM (1981) Cysteine auxotrophy of human leukemic lymphoblasts is associated with decreased amounts of intracellular cystathionase messenger ribonucleic acid. Biochemistry 20(5):1312–1318PubMedCrossRefGoogle Scholar
  79. 79.
    Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2002) Pegylated arginine deiminase (ADi-SS PEG 20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res 62(19):5443–5450PubMedGoogle Scholar
  80. 80.
    Watson M, Roulston A, Belec L, Billot X, Marcellus R, Bedard D, Bernier C, Branchaud S, Chan H, Dairi K, Gilbert K, Goulet D, gratton MO, Isakau H, Jang A, Khadir A, Koch E, Lavoie M, Lawless M, Nguyen M, Paquette D, Turcotte E, Berger A, Mitchell M, Shore GC, Beauparlant P (2009) The small molecule GMX1778 is a potent inhibitor of NAD + biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29(21):5872–5888PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–360PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, Kalna G, Tomlinson IP, Pollard PJ, Watson DG, DeBerardinis RJ, Shlomi T, Ruppin E, Gottlieb E (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477(7363):225–228PubMedCrossRefGoogle Scholar
  84. 84.
  85. 85.
    Zhang XD (2011) Illustration of SSMD, Z score, SSMD*, z* score and t statistic for hit selection in RNAi high-throughput screens. J Biomol Screen 16(7):775–785PubMedCrossRefGoogle Scholar
  86. 86.
    Lin LZ, Lin J (2011) Antabuse (disulfiram) as an affordable and promising anticancer drug. Int J Cancer 129(5):1285–1286PubMedCrossRefGoogle Scholar
  87. 87.
    Kontos CK, Papadopoulos IN, Fragoulis EG, Scorilas A (2010) Quantitative expression analysis and prognostic significance of L-DOPA decarboxylase in colorectal adenocarcinoma. Br J Cancer 102(9):1384–1390PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Wafa LA, Cheng H, Rao MA, Nelson CC, Cox M, Hirst M, Sadowski I, Rennie PS (2003) Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system. Biochem J 375(Pt 2):373–383PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Habibi D, Ogloff N, Jalili RB, Yost A, Weng AP, Ghahary A, Ong CJ (2012) Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs 30(4):1361–1370PubMedCrossRefGoogle Scholar
  90. 90.
    Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases: can they link metabolism and transcription? Cell Metab 12(4):321–327PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Albaugh BN, Arnold KM, Denu JM (2011) KAT(ching) metabolism by the tail: insight into the links between lysine acetyltransferases and metabolism. Chem Biochem 12(2):290–299Google Scholar
  92. 92.
    Rajendran P, Williams DE, Ho E, Dashwood RH (2011) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46(3):181–199PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Hanover JA, Krause MW, Love DC (2012) Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13(5):312–321PubMedCrossRefGoogle Scholar
  94. 94.
    Pearce EL (2010) Metabolism in T cell activation and differentiation. Curr Opin Immunol 22(3):314–320PubMedCrossRefGoogle Scholar
  95. 95.
    Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C, Ruohola-Baker H (2012) HIF alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31(9):2103–2116PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M, McDonough MA, King ON, Clifton IJ, Klose RJ, Claridge TD, Ratcliffe PJ, Schofield CJ, Kawamura A (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12(5):463–469PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David M Hockenbery
    • 1
  • Mark Tom
    • 1
  • Cori Abikoff
    • 1
  • Daciana Margineantu
    • 1
  1. 1.Division of Clinical Research SeattleFred Hutchinson Cancer Research CenterWAUSA

Personalised recommendations