Skip to main content

Activation of Immune-Mediated Tumor Cell Death by Chemotherapy

  • Chapter
  • First Online:
Cell Death Signaling in Cancer Biology and Treatment

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

  • 2201 Accesses

Abstract

Like pathogens, tumor cells express a range of antigens that can be recognized by the immune system and are therefore susceptible to immune-mediated death. It is widely recognized that the immune system plays a significant role in preventing cancer development through the elimination of malignant and pre-malignant cells, and in controlling tumor growth, once this protective mechanism has failed. The capacity of the immune system to contribute to the success of anti-cancer therapy, however, is a more recent concept. Originally assumed to have a detrimental effect on anti-tumor immunity due to its indiscriminate targeting of proliferating cells, including lymphocytes, it has now emerged that chemotherapy can enhance anti-tumor immune responses through altering the level and context of antigen presentation to immune effectors and through altering the immunological milieu, creating a favorable environment for the generation of anti-tumor immunity. Activation of immune-mediated tumor cell death by chemotherapy opens the door to the possibility of novel treatment strategies combining standard chemotherapy with immunotherapy agents aimed at enhancing such responses. Preclinical studies and early phase trials of combination chemoimmunotherapy have produced promising results. However, it is becoming clear that synergy is dependent not only on the drugs selected, but also on the intrinsic properties of the host and the tumor. Development of such combination regimens will therefore require careful design and an individualized approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burnet M (1957) Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1:841–847

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    CAS  PubMed  Google Scholar 

  3. Neller MA, Lopez JA, Schmidt CW (2008) Antigens for cancer immunotherapy. Semin Immunol 20:286–295

    CAS  PubMed  Google Scholar 

  4. Huang AY, Golumbek P, Ahmadzadeh M et al (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965

    CAS  PubMed  Google Scholar 

  5. Marzo AL, Lake RA, Lo D et al (1999) Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol 162:5838–5845

    CAS  PubMed  Google Scholar 

  6. van Mierlo GJ, Boonman ZF, Dumortier HM et al (2004) Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8 + CTL to cause tumor eradication. J Immunol 173:6753–6759

    PubMed  Google Scholar 

  7. Rock KL, York IA, Goldberg AL (2004) Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5:670–677

    CAS  PubMed  Google Scholar 

  8. Watts C (2004) The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol 5:685–692

    CAS  PubMed  Google Scholar 

  9. Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143:1283–1288

    CAS  PubMed  Google Scholar 

  10. Lin ML, Zhan Y, Villadangos JA et al (2008) The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol Cell Biol 86:353–362

    CAS  PubMed  Google Scholar 

  11. van der Most RG, Currie A, Robinson BWS et al (2006) Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res 66:601–604

    PubMed  Google Scholar 

  12. Boesen M, Svane IM, Engel AM et al (2000) CD8 + T cells are crucial for the ability of congenic normal mice to reject highly immunogenic sarcomas induced in nude mice with 3-methylcholanthrene. Clin Exp Immunol 121:210–215

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Smyth MJ, Thia KY, Street SE et al (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Ward PL, Koeppen HK, Hurteau T et al (1990) Major histocompatibility complex class I and unique antigen expression by murine tumors that escaped from CD8 + T-cell-dependent surveillance. Cancer Res 50:3851–3858

    CAS  PubMed  Google Scholar 

  15. van den Broek ME, Kagi D, Ossendorp F et al (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790

    PubMed  Google Scholar 

  16. Broomfield SA, van der Most RG, Prosser AC et al (2009) Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J Immunol 182:5217–5224

    CAS  PubMed  Google Scholar 

  17. Serba S, Schmidt J, Wentzensen N et al (2008) Transfection with CD40L induces tumour suppression by dendritic cell activation in an orthotopic mouse model of pancreatic adenocarcinoma. Gut 57:344–351

    CAS  PubMed  Google Scholar 

  18. Slos P, De Meyer M, Leroy P et al (2001) Immunotherapy of established tumors in mice by intratumoral injection of an adenovirus vector harboring the human IL-2 cDNA: induction of CD8(+) T-cell immunity and NK activity. Cancer Gene Ther 8:321–332

    CAS  PubMed  Google Scholar 

  19. Sutmuller RP, van Duivenvoorde LM, van Elsas A et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4 + T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322

    CAS  PubMed  Google Scholar 

  21. Pulendran B, Palucka K, Banchereau J (2001) Sensing pathogens and tuning immune responses. Science 293:253–256

    CAS  PubMed  Google Scholar 

  22. Martinez GJ, Nurieva RI, Yang XO et al (2008) Regulation and function of proinflammatory TH17 cells. Ann N Y Acad Sci 1143:188–211

    CAS  PubMed  Google Scholar 

  23. Matzinger P, Kamala T (2011) Tissue-based class control: the other side of tolerance. Nat Rev Immunol 11:221–230

    CAS  PubMed  Google Scholar 

  24. Bennett SR, Carbone FR, Karamalis F et al (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480

    CAS  PubMed  Google Scholar 

  25. Lanzavecchia A (1998) Immunology. Licence to kill. Nature 393:413–414

    CAS  PubMed  Google Scholar 

  26. Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4 + T-helper and a T-killer cell. Nature 393:474–478

    CAS  PubMed  Google Scholar 

  27. Schoenberger SP, Toes RE, van der Voort EI et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    CAS  PubMed  Google Scholar 

  28. Bennett SR, Carbone FR, Karamalis F et al (1997) Induction of a CD8 + cytotoxic T lymphocyte response by cross-priming requires cognate CD4 + T cell help. J Exp Med 186:65–70

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ossendorp F, Mengede E, Camps M et al (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Quezada SA, Simpson TR, Peggs KS et al (2010) Tumor-reactive CD4 + T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207:637–650

    Google Scholar 

  31. Hung K, Hayashi R, Lafond-Walker A et al (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Currie AJ, Prosser A, McDonnell A et al (2009) Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J Immunol 183:7898–7908

    CAS  PubMed  Google Scholar 

  33. Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360

    CAS  PubMed  Google Scholar 

  34. Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    CAS  PubMed  Google Scholar 

  35. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    CAS  PubMed  Google Scholar 

  36. Murugaiyan G, Saha B (2009) Protumor vs antitumor functions of IL-17. J Immunol 183:4169–4175

    CAS  PubMed  Google Scholar 

  37. Bennett SR, Carbone FR, Toy T et al (1998) B cells directly tolerize CD8(+) T cells. J Exp Med 188:1977–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Qin Z, Richter G, Schuler T et al (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4:627–630

    CAS  PubMed  Google Scholar 

  39. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480

    CAS  PubMed  Google Scholar 

  40. Medzhitov R, Janeway C Jr (2000) Innate immunity. New Engl J Med 343:338–344

    CAS  PubMed  Google Scholar 

  41. Borghesi L, Milcarek C (2007) Innate versus adaptive immunity: a paradigm past its prime? Cancer Res 67:3989–3993

    CAS  PubMed  Google Scholar 

  42. Dalod M, Hamilton T, Salomon R et al (2003) Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta. J Exp Med 197:885–898

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–53

    CAS  PubMed  Google Scholar 

  44. Megjugorac NJ, Young HA, Amrute SB et al (2004) Virally stimulated plasmacytoid dendritic cells produce chemokines and induce migration of T and NK cells. J Leukoc Biol 75:504–514

    CAS  PubMed  Google Scholar 

  45. Bradley M, Zeytun A, Rafi-Janajreh A et al (1998) Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas + and Fas- tumor cells. Blood 92:4248–4255

    CAS  PubMed  Google Scholar 

  46. Pardo J, Balkow S, Anel A et al (2002) Granzymes are essential for natural killer cell-mediated and perf-facilitated tumor control. Eur J Immunol 32:2881–2887

    CAS  PubMed  Google Scholar 

  47. Takeda K, Hayakawa Y, Smyth MJ et al (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7:94–100

    CAS  PubMed  Google Scholar 

  48. van den Broek MF, Kagi D, Zinkernagel RM et al (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol 25:3514–3516

    PubMed  Google Scholar 

  49. Mocikat R, Braumuller H, Gumy A et al (2003) Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561–569

    CAS  PubMed  Google Scholar 

  50. Cole KE, Strick CA, Paradis TJ et al (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187:2009–2021

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Farber JM (1997) Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61:246–257

    CAS  PubMed  Google Scholar 

  52. Barchet W, Cella M, Colonna M (2005) Plasmacytoid dendritic cells–virus experts of innate immunity. Semin Immunol 17:253–261

    CAS  PubMed  Google Scholar 

  53. Liu C, Lou Y, Lizee G et al (2008) Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 118:1165–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Shankaran V, Ikeda H, Bruce AT et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    CAS  PubMed  Google Scholar 

  55. Sanchez-Perez L, Kottke T, Diaz RM et al (2005) Potent selection of antigen loss variants of B16 melanoma following inflammatory killing of melanocytes in vivo. Cancer Res 65:2009–2017

    CAS  PubMed  Google Scholar 

  56. Slingluff CL Jr, Colella TA, Thompson L et al (2000) Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunol Immunother 48:661–672

    CAS  PubMed  Google Scholar 

  57. Singh R, Paterson Y (2007) Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res 67:1887–1892

    CAS  PubMed  Google Scholar 

  58. Zhou G, Lu Z, McCadden JD et al (2004) Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med 200:1581–1592

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Yee C, Thompson JA, Byrd D et al (2002) Adoptive T cell therapy using antigen-specific CD8 + T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    CAS  PubMed Central  PubMed  Google Scholar 

  60. So T, Takenoyama M, Mizukami M et al (2005) Haplotype loss of HLA class I antigen as an escape mechanism from immune attack in lung cancer. Cancer Res 65:5945–5952

    CAS  PubMed  Google Scholar 

  61. Baba T, Hanagiri T, Ichiki Y et al (2007) Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B. Cancer Sci 98:1795–1802

    CAS  PubMed  Google Scholar 

  62. Qin Z, Noffz G, Mohaupt M et al (1997) Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells. J Immunol 159:770–776

    CAS  PubMed  Google Scholar 

  63. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    CAS  PubMed  Google Scholar 

  64. Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    CAS  PubMed  Google Scholar 

  66. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    CAS  PubMed  Google Scholar 

  67. Takahashi T, Dejbakhsh-Jones S, Strober S (2006) Expression of CD161 (NKR-P1A) defines subsets of human CD4 and CD8 T cells with different functional activities. J Immunol 176:211–216

    CAS  PubMed  Google Scholar 

  68. Shin MS, Kim HS, Lee SH et al (2001) Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 61:4942–4946

    CAS  PubMed  Google Scholar 

  69. O’Connell J, O’Sullivan GC, Collins JK et al (1996) The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184:1075–1082

    PubMed  Google Scholar 

  70. Letsch A, Keilholz U, Schadendorf D et al (2000) High frequencies of circulating melanoma-reactive CD8 + T cells in patients with advanced melanoma. Int J Cancer 87:659–664

    CAS  PubMed  Google Scholar 

  71. Ram M, Shoenfeld Y (2007) Harnessing autoimmunity (vitiligo) to treat melanoma: a myth or reality? Ann N Y Acad Sci 1110:410–425

    CAS  PubMed  Google Scholar 

  72. Andersen MH, Pedersen LO, Capeller B et al (2001) Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 61:5964–5968

    CAS  PubMed  Google Scholar 

  73. Kokowski K, Harnack U, Dorn DC et al (2008) Quantification of the CD8 + T cell response against a mucin epitope in patients with breast cancer. Arch Immunol Ther Exp (Warsz) 56:141–145

    CAS  Google Scholar 

  74. Matsuzaki J, Qian F, Luescher I et al (2008) Recognition of naturally processed and ovarian cancer reactive CD8 + T cell epitopes within a promiscuous HLA class II T-helper region of NY-ESO-1. Cancer Immunol Immunother 57:1185–1195

    CAS  PubMed  Google Scholar 

  75. Minev B, Hipp J, Firat H et al (2000) Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci USA 97:4796–4801

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Nagorsen D, Keilholz U, Rivoltini L et al (2000) Natural T-cell response against MHC class I epitopes of epithelial cell adhesion molecule, her-2/neu, and carcinoembryonic antigen in patients with colorectal cancer. Cancer Res 60:4850–4854

    CAS  PubMed  Google Scholar 

  77. Nakamura Y, Noguchi Y, Satoh E et al (2009) Spontaneous remission of a non-small cell lung cancer possibly caused by anti-NY-ESO-1 immunity. Lung Cancer 65:119–122

    PubMed  Google Scholar 

  78. Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    CAS  PubMed  Google Scholar 

  79. Miller AM, Lundberg K, Ozenci V et al (2006) CD4 + CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177:7398–7405

    CAS  PubMed  Google Scholar 

  80. Ormandy LA, Hillemann T, Wedemeyer H et al (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457–2464

    CAS  PubMed  Google Scholar 

  81. Wolf AM, Wolf D, Steurer M et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  82. Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New Engl J Med 348:203–213

    CAS  PubMed  Google Scholar 

  83. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    CAS  PubMed  Google Scholar 

  84. Cho Y, Miyamoto M, Kato K et al (2003) CD4 + and CD8 + T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63:1555–1559

    CAS  PubMed  Google Scholar 

  85. Hiraoka K, Miyamoto M, Cho Y et al (2006) Concurrent infiltration by CD8 + T cells and CD4 + T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    CAS  PubMed  Google Scholar 

  87. Perrone G, Ruffini PA, Catalano V et al (2008) Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer 44:1875–1882

    CAS  PubMed  Google Scholar 

  88. Petersen RP, Campa MJ, Sperlazza J et al (2006) Tumor infiltrating Foxp3 + regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107:2866–2872

    PubMed  Google Scholar 

  89. Zhou J, Ding T, Pan W et al (2009) Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer 125:1640–1648

    CAS  PubMed  Google Scholar 

  90. Correale P, Rotundo MS, Del Vecchio MT et al (2010) Regulatory (FoxP3 +) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother 33:435–441

    PubMed  Google Scholar 

  91. Frey DM, Droeser RA, Viehl CT et al (2010) High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126:2635–2643

    CAS  PubMed  Google Scholar 

  92. Lee WS, Park S, Lee WY et al (2010) Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer 116:5188–5199

    PubMed  Google Scholar 

  93. Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3 + T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    PubMed  Google Scholar 

  94. Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3 + regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother 60:909–918

    CAS  PubMed  Google Scholar 

  95. Su X, Ye J, Hsueh EC et al (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184:1630–1641

    CAS  PubMed  Google Scholar 

  96. Tosolini M, Kirilovsky A, Mlecnik B et al (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 71:1263–1271

    CAS  PubMed  Google Scholar 

  97. Badoual C, Hans S, Rodriguez J et al (2006) Prognostic value of tumor-infiltrating CD4 + T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472

    CAS  PubMed  Google Scholar 

  98. Zhang YL, Li J, Mo HY et al (2010) Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer 9:4

    PubMed Central  PubMed  Google Scholar 

  99. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    CAS  PubMed  Google Scholar 

  100. Mini E, Nobili S, Caciagli B et al (2006) Cellular pharmacology of gemcitabine. Ann Oncol 17(Suppl 5):v7–v12

    PubMed  Google Scholar 

  101. Hall AG, Tilby MJ (1992) Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev 6:163–173

    CAS  PubMed  Google Scholar 

  102. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    CAS  PubMed  Google Scholar 

  103. Nielsen D, Maare C, Skovsgaard T (1996) Cellular resistance to anthracyclines. Gen Pharmacol 27:251–255

    CAS  PubMed  Google Scholar 

  104. Perez EA (2009) Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8:2086–2095

    CAS  PubMed  Google Scholar 

  105. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    CAS  PubMed  Google Scholar 

  106. Nowak AK, Mahendran S, van der Most RG et al (2008) Cisplatin and pemetrexed synergises with immunotherapy to result in cures in established murine mesothelioma. In: Proceedings of the American association of cancer research annual meeting 487 (Abstract 2073, 2008)

    Google Scholar 

  107. van der Most RG, Currie AJ, Mahendran S et al (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58:1219–1228

    Google Scholar 

  108. Nowak AK, Lake RA, Marzo AL et al (2003) Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913

    CAS  PubMed  Google Scholar 

  109. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  110. Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63:4490–4496

    CAS  PubMed  Google Scholar 

  111. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    CAS  PubMed  Google Scholar 

  112. Zitvogel L, Kepp O, Senovilla L et al (2010) Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 16:3100–3104

    CAS  PubMed  Google Scholar 

  113. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    CAS  PubMed  Google Scholar 

  114. Casares N, Pequignot MO, Tesniere A et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    CAS  PubMed  Google Scholar 

  116. Liu WM, Fowler DW, Smith P et al (2010) Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer 102:115–123

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Ramakrishnan R, Assudani D, Nagaraj S et al (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  118. van der Most RG, Currie AJ, Cleaver AL et al (2009) Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One 4:e6982

    PubMed Central  PubMed  Google Scholar 

  119. Soriani A, Zingoni A, Cerboni C et al (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113:3503–3511

    CAS  PubMed  Google Scholar 

  120. Fine JH, Chen P, Mesci A et al (2010) Chemotherapy-induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Res 70:7102–7113

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Karre K (2008) Natural killer cell recognition of missing self. Nat Immunol 9:477–480

    PubMed  Google Scholar 

  122. Radojcic V, Bezak KB, Skarica M et al (2010) Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol Immunother 59:137–148

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Salem ML, Al-Khami AA, El-Naggar SA et al (2010) Cyclophosphamide induces dynamic alterations in the host microenvironments resulting in a Flt3 ligand-dependent expansion of dendritic cells. J Immunol 184:1737–1747

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Salem ML, El-Naggar SA, Cole DJ (2010) Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo. Cell Immunol 261:134–143

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Pfannenstiel LW, Lam SS, Emens LA et al (2010) Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. Cell Immunol 263:79–87

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Shurin GV, Tourkova IL, Kaneno R et al (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 183:137–144

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262

    CAS  PubMed  Google Scholar 

  128. Mackall CL, Hakim FT, Gress RE (1997) Restoration of T-cell homeostasis after T-cell depletion. Semin Immunol 9:339–346

    CAS  PubMed  Google Scholar 

  129. Schluns KS, Kieper WC, Jameson SC et al (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432

    CAS  PubMed  Google Scholar 

  130. Tan JT, Ernst B, Kieper WC et al (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8 + cells but are not required for memory phenotype CD4 + cells. J Exp Med 195:1523–1532

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Marleau AM, Sarvetnick N (2005) T cell homeostasis in tolerance and immunity. J Leukoc Biol 78:575–584

    CAS  PubMed  Google Scholar 

  132. Theofilopoulos AN, Dummer W, Kono DH (2001) T cell homeostasis and systemic autoimmunity. J Clin Invest 108:335–340

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Dummer W, Niethammer AG, Baccala R et al (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Maguire HC Jr, Ettore VL (1967) Enhancement of dinitrochlorobenzene (DNCB) contact sensitization by cyclophosphamide in the guinea pig. J Invest Dermatol 48:39–43

    CAS  PubMed  Google Scholar 

  135. Berd D, Mastrangelo MJ, Engstrom PF et al (1982) Augmentation of the human immune response by cyclophosphamide. Cancer Res 42:4862–4866

    CAS  PubMed  Google Scholar 

  136. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    CAS  PubMed  Google Scholar 

  137. Ghiringhelli F, Menard C, Puig PE et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4 + CD25 + regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    CAS  PubMed  Google Scholar 

  138. Rettig L, Seidenberg S, Parvanova I et al (2011) Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int J Cancer 129:832–838

    CAS  PubMed  Google Scholar 

  139. Vicari AP, Luu R, Zhang N et al (2009) Paclitaxel reduces regulatory T cell numbers and inhibitory function and enhances the anti-tumor effects of the TLR9 agonist PF-3512676 in the mouse. Cancer Immunol Immunother 58:615–628

    CAS  PubMed  Google Scholar 

  140. Fisson S, Darrasse-Jeze G, Litvinova E et al (2003) Continuous activation of autoreactive CD4 + CD25 + regulatory T cells in the steady state. J Exp Med 198:737–746

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Vukmanovic-Stejic M, Zhang Y, Cook JE et al (2006) Human CD4 + CD25hi Foxp3 + regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116:2423–2433

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Chen X, Subleski JJ, Kopf H et al (2008) Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4 + CD25 + FoxP3 + T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J Immunol 180:6467–6471

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Chen Y, Shen S, Gorentla BK et al (2012) Murine regulatory T cells contain hyperproliferative and death-prone subsets with differential ICOS expression. J Immunol 188:1698–1707

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Strauss L, Bergmann C, Szczepanski MJ et al (2008) Expression of ICOS on human melanoma-infiltrating CD4 + CD25highFoxp3 + T regulatory cells: implications and impact on tumor-mediated immune suppression. J Immunol 180:2967–2980

    CAS  PubMed  Google Scholar 

  145. Nowak AK, Robinson BW, Lake RA (2002) Gemcitabine exerts a selective effect on the humoral immune response: implications for combination chemo-immunotherapy. Cancer Res 62:2353–2358

    CAS  PubMed  Google Scholar 

  146. Wijayahadi N, Haron MR, Stanslas J et al (2007) Changes in cellular immunity during chemotherapy for primary breast cancer with anthracycline regimens. J Chemother 19:176–723

    Google Scholar 

  147. Demaria S, Volm MD, Shapiro RL et al (2001) Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res 7:3025–3030

    CAS  PubMed  Google Scholar 

  148. Ladoire S, Arnould L, Apetoh L et al (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3 + regulatory T cells. Clin Cancer Res 14:2413–2420

    CAS  PubMed  Google Scholar 

  149. Yasuda K, Nirei T, Sunami E et al (2011) Density of CD4(+) and CD8(+) T lymphocytes in biopsy samples can be a predictor of pathological response to chemoradiotherapy (CRT) for rectal cancer. Radiat Oncol 6:49

    PubMed Central  PubMed  Google Scholar 

  150. Peng RQ, Chen YB, Ding Y et al (2010) Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. World J Gastroenterol: WJG 16:2428–2434

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    CAS  PubMed  Google Scholar 

  152. Blanke CD, Rankin C, Demetri GD et al (2008) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 26:626–632

    CAS  PubMed  Google Scholar 

  153. Borg C, Terme M, Taieb J et al (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114:379–388

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Balachandran VP, Cavnar MJ, Zeng S et al (2011) Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med 17:1094–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Anraku M, Tagawa T, Wu L et al (2010) Synergistic antitumor effects of regulatory T cell blockade combined with pemetrexed in murine malignant mesothelioma. J Immunol 185:956–966

    CAS  PubMed  Google Scholar 

  156. Correale P, Del Vecchio MT, La Placa M et al (2008) Chemotherapeutic drugs may be used to enhance the killing efficacy of human tumor antigen peptide-specific CTLs. J Immunother 31:132–147

    CAS  PubMed  Google Scholar 

  157. Fridlender ZG, Sun J, Singhal S et al (2010) Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther 18:1947–1959

    Google Scholar 

  158. Tseng CW, Hung CF, Alvarez RD et al (2008) Pretreatment with cisplatin enhances E7-specific CD8 + T-cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14:3185–3192

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Wada S, Yoshimura K, Hipkiss EL et al (2009) Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69:4309–4318

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Zhong H, Han B, Tourkova IL et al (2007) Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res 13:5455–5462

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New Engl J Med 364:2517–2526

    CAS  PubMed  Google Scholar 

  162. Wolchok JD, Neyns B, Linette G et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11:155–164

    CAS  PubMed  Google Scholar 

  163. Correale P, Cusi MG, Tsang KY et al (2005) Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 23:8950–8958

    CAS  PubMed  Google Scholar 

  164. Manegold C, Gravenor D, Woytowitz D et al (2008) Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3979–3986

    CAS  PubMed  Google Scholar 

  165. Emens LA, Asquith JM, Leatherman JM et al (2009) Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 27:5911–5918

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Hegmans JP, Veltman JD, Lambers ME et al (2010) Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am J Respir Crit Care Med 181:1383–1390

    CAS  PubMed  Google Scholar 

  167. Ramlau R, Quoix E, Rolski J et al (2008) A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer. J Thorac Oncol 3:735–744

    PubMed  Google Scholar 

  168. Walker DG, Laherty R, Tomlinson FH et al (2008) Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J Clin Neurosci 15:114–121

    CAS  PubMed  Google Scholar 

  169. Ciampricotti M, Hau CS, Doornebal CW et al (2012) Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nat Med 18:344–346. Author reply 346

    Google Scholar 

  170. O’Gorman WE, Dooms H, Thorne SH et al (2009) The initial phase of an immune response functions to activate regulatory T cells. J Immunol 183:332–339

    PubMed Central  PubMed  Google Scholar 

  171. Darrasse-Jeze G, Bergot AS, Durgeau A et al (2009) Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. J Clin Invest 119:2648–2662

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Turtle CJ, Swanson HM, Fujii N et al (2009) A distinct subset of self-renewing human memory CD8 + T cells survives cytotoxic chemotherapy. Immunity 31:834–844

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Dunker K, Schlaf G, Bukur J et al (2008) Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72:137–148

    CAS  PubMed  Google Scholar 

  174. Lin A, Zhang X, Zhou WJ et al (2011) HLA-G expression is associated with a poor prognosis in patients with esophageal squamous cell carcinoma. Int J Cancer 129:1382–1390

    Google Scholar 

  175. Paul P, Cabestre FA, Le Gal FA et al (1999) Heterogeneity of HLA-G gene transcription and protein expression in malignant melanoma biopsies. Cancer Res 59:1954–1960

    CAS  PubMed  Google Scholar 

  176. Chang CC, Ferrone S (2006) NK cell activating ligands on human malignant cells: molecular and functional defects and potential clinical relevance. Semin Cancer Biol 16:383–392

    CAS  PubMed  Google Scholar 

  177. Clayton A, Mitchell JP, Court J et al (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258

    CAS  PubMed  Google Scholar 

  178. Uyttenhove C, Pilotte L, Theate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    CAS  PubMed  Google Scholar 

  179. Villablanca EJ, Raccosta L, Zhou D et al (2010) Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16:98–105

    CAS  PubMed  Google Scholar 

  180. Adjei AA (2004) Pharmacology and mechanism of action of pemetrexed. Clin Lung Cancer 5(Suppl 2):S51–S55

    CAS  PubMed  Google Scholar 

  181. Longo-Sorbello GS, Bertino JR (2001) Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica 86:121–127

    CAS  PubMed  Google Scholar 

  182. Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie J. McCoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCoy, M.J., Nowak, A.K., Lake, R.A. (2013). Activation of Immune-Mediated Tumor Cell Death by Chemotherapy. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_14

Download citation

Publish with us

Policies and ethics