Proteasome Inhibition as a Novel Strategy for Cancer Treatment

  • Min Shen
  • Q. Ping Dou
Part of the Cell Death in Biology and Diseases book series (CELLDEATH)


The proteasome is a multi-subunit protease complex, responsible for the degradation of misfolded, damaged, or short-lived proteins. Indeed, more than 90 % of intracellular proteins are degraded through the ubiquitin–proteasome system (UPS). The UPS is extensively involved in various cellular events, including cell cycle, cell signaling, stress response, and apoptosis. Inhibition of proteasome function could result in growth arrest and/or cell death. The involved molecular mechanisms include dysregulation of the cell cycle, inactivation of NF-κB pathway, disturbance of the pro- and anti-apoptotic balance, induction of unfolded protein response, and induction of oxidative stress. The observation that suppression of proteasome function by small chemical inhibitors was able to induce apoptosis in cancer cells but not in normal cells supports the hypothesis that the proteasome could be a valuable target for cancer treatment. This idea has been validated from benchtop to bedside. In 2003, the first proteasome inhibitor anticancer drug, bortezomib, was approved in the United States for the treatment of multiple myeloma and mantle cell lymphoma. While bortezomib achieved great success in clinical applications, problems such as resistance, dose-limiting toxicities, unsatisfied efficacy in solid tumors, and interaction with some natural compounds have been observed. Therefore, it is necessary to further investigate the proteasome inhibition-mediated mechanism of cell death as well as the development of novel, new-generation proteasome inhibitors with lower toxicity and wider applications.


Multiple Myeloma Endoplasmic Reticulum Stress Unfold Protein Response Proteasome Inhibitor Mantle Cell Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Sara Schmitt and Daniela Buac for critical reading of the manuscript. This work was partially supported by the National Cancer Institute (1R01CA120009, 3R01CA120009-04S1, and 5R01CA127258-05, to QPD).


  1. 1.
    Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12(9):1191–1197PubMedGoogle Scholar
  2. 2.
    Spataro V, Norbury C, Harris AL (1998) The ubiquitin-proteasome pathway in cancer. Br J Cancer 77(3):448–455PubMedCentralPubMedGoogle Scholar
  3. 3.
    de Bettignies G, Coux O (2010) Proteasome inhibitors: Dozens of molecules and still counting. Biochimie 92(11):1530–1545PubMedGoogle Scholar
  4. 4.
    Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421PubMedGoogle Scholar
  5. 5.
    Sorokin AV, Kim ER, Ovchinnikov LP (2009) Proteasome system of protein degradation and processing. Biochemistry (Mosc) 74(13):1411–1442Google Scholar
  6. 6.
    Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360PubMedGoogle Scholar
  7. 7.
    Orlowski M, Cardozo C, Michaud C (1993) Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32(6):1563–1572PubMedGoogle Scholar
  8. 8.
    Nandi D, Tahiliani P, Kumar A, Chandu D (2006) The ubiquitin-proteasome system. J Biosci 31(1):137–155PubMedGoogle Scholar
  9. 9.
    Strehl B, Seifert U, Kruger E, Heink S, Kuckelkorn U, Kloetzel PM (2005) Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 207:19–30PubMedGoogle Scholar
  10. 10.
    Angeles A, Fung G, Luo H (2012) Immune and non-immune functions of the immunoproteasome. Front Biosci 17:1904–1916Google Scholar
  11. 11.
    Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19(1):99–115PubMedCentralPubMedGoogle Scholar
  12. 12.
    Borissenko L, Groll M (2007) 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107(3):687–717PubMedGoogle Scholar
  13. 13.
    Tsukamoto S, Yokosawa H (2010) Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy. Planta Med 76(11):1064–1074PubMedGoogle Scholar
  14. 14.
    Krunic A, Vallat A, Mo S, Lantvit DD, Swanson SM, Orjala J (2010) Scytonemides A and B, cyclic peptides with 20S proteasome inhibitory activity from the cultured cyanobacterium Scytonema hofmanii. J Nat Prod 73(11):1927–1932PubMedCentralPubMedGoogle Scholar
  15. 15.
    Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, Ohnuki T et al (2000) TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J Antibiot 53(2):105–109PubMedGoogle Scholar
  16. 16.
    Nickeleit I, Zender S, Sasse F, Geffers R, Brandes G, Sorensen I et al (2008) Argyrin a reveals a critical role for the tumor suppressor protein p27(kip1) in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 14(1):23–35PubMedGoogle Scholar
  17. 17.
    Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar AP, Dou QP (2008) Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res 68(18):7283–7292PubMedCentralPubMedGoogle Scholar
  18. 18.
    Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC et al (2009) Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 124(10):2450–2459PubMedCentralPubMedGoogle Scholar
  19. 19.
    Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34PubMedGoogle Scholar
  20. 20.
    Mozzicafreddo M, Cuccioloni M, Cecarini V, Eleuteri AM, Angeletti M (2009) Homology modeling and docking analysis of the interaction between polyphenols and mammalian 20S proteasomes. J Chem Inf Model 49(2):401–409PubMedGoogle Scholar
  21. 21.
    Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG et al (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113(23):5927–5937PubMedGoogle Scholar
  22. 22.
    Yang H, Chen D, Cui QC, Yuan X, Dou QP (2006) Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 66(9):4758–4765PubMedGoogle Scholar
  23. 23.
    Yang H, Shi G, Dou QP (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71(2):426–437PubMedGoogle Scholar
  24. 24.
    Yang H, Landis-Piwowar KR, Lu D, Yuan P, Li L, Reddy GP et al (2008) Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J Cell Biochem 103(1):234–244PubMedGoogle Scholar
  25. 25.
    Chen D, Cui QC, Yang H, Dou QP (2006) Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res 66(21):10425–10433PubMedGoogle Scholar
  26. 26.
    Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP (2005) Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 7(6):R897–R908PubMedCentralPubMedGoogle Scholar
  27. 27.
    Li X, Wood TE, Sprangers R, Jansen G, Franke NE, Mao X et al (2010) Effect of noncompetitive proteasome inhibition on bortezomib resistance. J Natl Cancer Inst 102(14):1069–1082PubMedGoogle Scholar
  28. 28.
    Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113(19):4667–4676PubMedCentralPubMedGoogle Scholar
  29. 29.
    Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C et al (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15(7):781–787PubMedGoogle Scholar
  30. 30.
    Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V et al (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269(5224):682–685PubMedGoogle Scholar
  31. 31.
    Tambyrajah WS, Bowler LD, Medina-Palazon C, Sinclair AJ (2007) Cell cycle-dependent caspase-like activity that cleaves p27(KIP1) is the beta(1) subunit of the 20S proteasome. Arch Biochem Biophys 466(2):186–193PubMedGoogle Scholar
  32. 32.
    Zhu Q, Wani G, Yao J, Patnaik S, Wang QE, El-Mahdy MA et al (2007) The ubiquitin-proteasome system regulates p53-mediated transcription at p21waf1 promoter. Oncogene 26(29):4199–4208PubMedGoogle Scholar
  33. 33.
    Chen F, Chang D, Goh M, Klibanov SA, Ljungman M (2000) Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth Differ 11(5):239–246PubMedGoogle Scholar
  34. 34.
    Concannon CG, Koehler BF, Reimertz C, Murphy BM, Bonner C, Thurow N et al (2007) Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26(12):1681–1692PubMedGoogle Scholar
  35. 35.
    Strauss SJ, Higginbottom K, Juliger S, Maharaj L, Allen P, Schenkein D et al (2007) The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67(6):2783–2790PubMedGoogle Scholar
  36. 36.
    Pandit B, Gartel AL (2011) Proteasome inhibitors induce p53-independent apoptosis in human cancer cells. Am J Pathol 178(1):355–360PubMedCentralPubMedGoogle Scholar
  37. 37.
    Wagenknecht B, Hermisson M, Eitel K, Weller M (1999) Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem 9(3):117–125PubMedGoogle Scholar
  38. 38.
    Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 13(22):5433–5441PubMedCentralPubMedGoogle Scholar
  39. 39.
    Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785PubMedGoogle Scholar
  40. 40.
    Sears C, Olesen J, Rubin D, Finley D, Maniatis T (1998) NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem 273(3):1409–1419PubMedGoogle Scholar
  41. 41.
    Heusch M, Lin L, Geleziunas R, Greene WC (1999) The generation of nfkb2 p52: mechanism and efficiency. Oncogene 18(46):6201–6208PubMedGoogle Scholar
  42. 42.
    Delic J, Masdehors P, Omura S, Cosset JM, Dumont J, Binet JL et al (1998) The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br J Cancer 77(7):1103–1107PubMedCentralPubMedGoogle Scholar
  43. 43.
    Voortman J, Resende TP (2007) Abou El Hassan MA, Giaccone G, Kruyt FA. TRAIL therapy in non-small cell lung cancer cells: sensitization to death receptor-mediated apoptosis by proteasome inhibitor bortezomib. Mol Cancer Ther 6(7):2103–2112PubMedGoogle Scholar
  44. 44.
    Nencioni A, Wille L, Dal Bello G, Boy D, Cirmena G, Wesselborg S et al (2005) Cooperative cytotoxicity of proteasome inhibitors and tumor necrosis factor-related apoptosis-inducing ligand in chemoresistant Bcl-2-overexpressing cells. Clin Cancer Res 11(11):4259–4265Google Scholar
  45. 45.
    Oyaizu H, Adachi Y, Okumura T, Okigaki M, Oyaizu N, Taketani S et al (2001) Proteasome inhibitor 1 enhances paclitaxel-induced apoptosis in human lung adenocarcinoma cell line. Oncol Rep 8(4):825–829Google Scholar
  46. 46.
    von Metzler I, Heider U, Mieth M, Lamottke B, Kaiser M, Jakob C et al (2009) Synergistic interaction of proteasome and topoisomerase II inhibition in multiple myeloma. Exp Cell Res 315(14):2471–2478Google Scholar
  47. 47.
    Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D et al (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101(6):2377–2380PubMedGoogle Scholar
  48. 48.
    Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K et al (2009) Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114(5):1046–1052PubMedCentralPubMedGoogle Scholar
  49. 49.
    Amschler K, Schon MP, Pletz N, Wallbrecht K, Erpenbeck L, Schon M (2010) NF-kappaB inhibition through proteasome inhibition or IKKbeta blockade increases the susceptibility of melanoma cells to cytostatic treatment through distinct pathways. J Invest Dermatol. 130(4):1073–1086PubMedGoogle Scholar
  50. 50.
    Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A 97(8):3850–3855PubMedCentralPubMedGoogle Scholar
  51. 51.
    Ding WX, Ni HM, Chen X, Yu J, Zhang L, Yin XM (2007) A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther 6(3):1062–1069PubMedGoogle Scholar
  52. 52.
    Zhu H, Zhang L, Dong F, Guo W, Wu S, Teraishi F et al (2005) Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene 24(31):4993–4999PubMedCentralPubMedGoogle Scholar
  53. 53.
    Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS (2005) The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4(3):443–449PubMedGoogle Scholar
  54. 54.
    Li C, Li R, Grandis JR, Johnson DE (2008) Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther 7(6):1647–1655PubMedCentralPubMedGoogle Scholar
  55. 55.
    Pigneux A, Mahon FX, Moreau-Gaudry F, Uhalde M, de Verneuil H, Lacombe F et al (2007) Proteasome inhibition specifically sensitizes leukemic cells to anthracyclin-induced apoptosis through the accumulation of Bim and Bax pro-apoptotic proteins. Cancer Biol Ther 6(4):603–611PubMedGoogle Scholar
  56. 56.
    Dewson G, Snowden RT, Almond JB, Dyer MJ, Cohen GM (2003) Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22(17):2643–2654PubMedGoogle Scholar
  57. 57.
    Lang-Rollin I, Maniati M, Jabado O, Vekrellis K, Papantonis S, Rideout HJ et al (2005) Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis 10(4):809–820PubMedGoogle Scholar
  58. 58.
    Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107(1):257–264PubMedGoogle Scholar
  59. 59.
    Nikiforov MA, Riblett M, Tang WH, Gratchouck V, Zhuang D, Fernandez Y et al (2007) Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc Natl Acad Sci U S A 104(49):19488–19493PubMedCentralPubMedGoogle Scholar
  60. 60.
    Chen S, Blank JL, Peters T, Liu XJ, Rappoli DM, Pickard MD et al (2010) Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res 70(11):4318–4326PubMedGoogle Scholar
  61. 61.
    Hu J, Dang N, Menu E, De Bryune E, Xu D, Van Camp B et al (2012) Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood 119(3):826–837PubMedGoogle Scholar
  62. 62.
    Ri M, Iida S, Ishida T, Ito A, Yano H, Inagaki A et al (2009) Bortezomib-induced apoptosis in mature T-cell lymphoma cells partially depends on upregulation of Noxa and functional repression of Mcl-1. Cancer Sci 100(2):341–348PubMedGoogle Scholar
  63. 63.
    Gomez-Bougie P, Wuilleme-Toumi S, Menoret E, Trichet V, Robillard N, Philippe M et al (2007) Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res 67(11):5418–5424PubMedGoogle Scholar
  64. 64.
    Podar K, Gouill SL, Zhang J, Opferman JT, Zorn E, Tai YT et al (2008) A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 27(6):721–731PubMedGoogle Scholar
  65. 65.
    Yuan BZ, Chapman J, Reynolds SH (2009) Proteasome inhibitors induce apoptosis in human lung cancer cells through a positive feedback mechanism and the subsequent Mcl-1 protein cleavage. Oncogene 28(43):3775–3786PubMedGoogle Scholar
  66. 66.
    Liu Y, Ye Y (2011) Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 21(6):867–883PubMedCentralPubMedGoogle Scholar
  67. 67.
    Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272(14):9086–9092PubMedGoogle Scholar
  68. 68.
    Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A 100(17):9946–9951PubMedCentralPubMedGoogle Scholar
  69. 69.
    Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107(12):4907–4916PubMedCentralPubMedGoogle Scholar
  70. 70.
    Fan WH, Hou Y, Meng FK, Wang XF, Luo YN, Ge PF (2011) Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin 32(5):619–625PubMedGoogle Scholar
  71. 71.
    Ling YH, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278(36):33714–33723PubMedGoogle Scholar
  72. 72.
    Du ZX, Zhang HY, Meng X, Guan Y, Wang HQ (2009) Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells. BMC Cancer 9:56PubMedCentralPubMedGoogle Scholar
  73. 73.
    Fribley A, Zeng Q, Wang CY (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24(22):9695–9704PubMedCentralPubMedGoogle Scholar
  74. 74.
    Papa L, Gomes E, Rockwell P (2007) Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12(8):1389–1405PubMedGoogle Scholar
  75. 75.
    Lee MH, Hyun DH, Jenner P, Halliwell B (2001) Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem 78(1):32–41PubMedGoogle Scholar
  76. 76.
    Bieler S, Meiners S, Stangl V, Pohl T, Stangl K (2009) Comprehensive proteomic and transcriptomic analysis reveals early induction of a protective anti-oxidative stress response by low-dose proteasome inhibition. Proteomics 9(12):3257–3267PubMedGoogle Scholar
  77. 77.
    Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172PubMedGoogle Scholar
  78. 78.
    Jagannath S, Barlogie B, Berenson JR, Siegel DS, Irwin D, Richardson PG et al (2008) Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma. Br J Haematol 143(4):537–540PubMedGoogle Scholar
  79. 79.
    Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617PubMedGoogle Scholar
  80. 80.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498PubMedGoogle Scholar
  81. 81.
    Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T et al (2007) Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 110(10):3557–3560PubMedGoogle Scholar
  82. 82.
    San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917Google Scholar
  83. 83.
    Mateos MV, Richardson PG, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O et al (2010) Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol 28(13):2259–2266PubMedGoogle Scholar
  84. 84.
    Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M et al (2011) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 12(5):431–440PubMedGoogle Scholar
  85. 85.
    Jagannath S, Durie BG, Wolf J, Camacho E, Irwin D, Lutzky J et al (2005) Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 129(6):776–783PubMedGoogle Scholar
  86. 86.
    Jagannath S, Durie BG, Wolf JL, Camacho ES, Irwin D, Lutzky J et al (2009) Extended follow-up of a phase 2 trial of bortezomib alone and in combination with dexamethasone for the frontline treatment of multiple myeloma. Br J Haematol 146(6):619–626PubMedGoogle Scholar
  87. 87.
    Mikhael JR, Belch AR, Prince HM, Lucio MN, Maiolino A, Corso A et al (2009) High response rate to bortezomib with or without dexamethasone in patients with relapsed or refractory multiple myeloma: results of a global phase 3b expanded access program. Br J Haematol 144(2):169–175PubMedGoogle Scholar
  88. 88.
    Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M et al (2005) PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 129(6):755–762PubMedGoogle Scholar
  89. 89.
    Popat R, Oakervee HE, Hallam S, Curry N, Odeh L, Foot N et al (2008) Bortezomib, doxorubicin and dexamethasone (PAD) front-line treatment of multiple myeloma: updated results after long-term follow-up. Br J Haematol 141(4):512–516PubMedGoogle Scholar
  90. 90.
    Cavo M, Tacchetti P, Patriarca F, Petrucci MT, Pantani L, Galli M et al (2010) Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 376(9758):2075–2085PubMedGoogle Scholar
  91. 91.
    Driscoll JJ, Burris J, Annunziata CM (2012) Targeting the proteasome with bortezomib in multiple myeloma: update on therapeutic benefit as an upfront single agent, induction regimen for stem-cell transplantation and as maintenance therapy. Am J Ther 19(2):133–144PubMedCentralPubMedGoogle Scholar
  92. 92.
    Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339PubMedGoogle Scholar
  93. 93.
    Mateos MV, Oriol A, Martinez-Lopez J, Gutierrez N, Teruel AI, de Paz R et al (2010) Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. Lancet Oncol 11(10):934–941PubMedGoogle Scholar
  94. 94.
    Palumbo A, Ambrosini MT, Benevolo G, Pregno P, Pescosta N, Callea V et al (2007) Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 109(7):2767–2772PubMedGoogle Scholar
  95. 95.
    Palumbo A, Bringhen S, Rossi D, Cavalli M, Larocca A, Ria R et al (2010) Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: a randomized controlled trial. J Clin Oncol 28(34):5101–5109PubMedGoogle Scholar
  96. 96.
    Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24(30):4867–4874PubMedGoogle Scholar
  97. 97.
    Goy A, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al (2009) Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol 20(3):520–525PubMedGoogle Scholar
  98. 98.
    Kouroukis CT, Fernandez LA, Crump M, Gascoyne RD, Chua NS, Buckstein R et al (2011) A phase II study of bortezomib and gemcitabine in relapsed mantle cell lymphoma from the National Cancer Institute of Canada Clinical Trials Group (IND 172). Leukemia lymphoma 52(3):394–399PubMedGoogle Scholar
  99. 99.
    Yang H, Zonder JA, Dou QP (2009) Clinical development of novel proteasome inhibitors for cancer treatment. Expert Opin Investig Drugs 18(7):957–971PubMedCentralPubMedGoogle Scholar
  100. 100.
    Kuppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5(4):251–262PubMedGoogle Scholar
  101. 101.
    de Vos S, Goy A, Dakhil SR, Saleh MN, McLaughlin P, Belt R et al (2009) Multicenter randomized phase II study of weekly or twice-weekly bortezomib plus rituximab in patients with relapsed or refractory follicular or marginal-zone B-cell lymphoma. J Clin Oncol 27(30):5023–5030PubMedGoogle Scholar
  102. 102.
    Coiffier B, Osmanov EA, Hong X, Scheliga A, Mayer J, Offner F et al (2011) Bortezomib plus rituximab versus rituximab alone in patients with relapsed, rituximab-naive or rituximab-sensitive, follicular lymphoma: a randomised phase 3 trial. Lancet Oncol. 12(8):773–784PubMedGoogle Scholar
  103. 103.
    Fowler N, Kahl BS, Lee P, Matous JV, Cashen AF, Jacobs SA et al (2011) Bortezomib, bendamustine, and rituximab in patients with relapsed or refractory follicular lymphoma: the phase II VERTICAL study. J Clin Oncol 29(25):3389–3395PubMedGoogle Scholar
  104. 104.
    Ruan J, Martin P, Furman RR, Lee SM, Cheung K, Vose JM et al (2011) Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol 29(6):690–697PubMedGoogle Scholar
  105. 105.
    Morris MJ, Kelly WK, Slovin S, Ryan C, Eicher C, Heller G et al (2007) A phase II trial of bortezomib and prednisone for castration resistant metastatic prostate cancer. J Urology 178(6):2378–2383, discussion 83-4Google Scholar
  106. 106.
    Hainsworth JD, Meluch AA, Spigel DR, Barton J Jr, Simons L, Meng C et al (2007) Weekly docetaxel and bortezomib as first-line treatment for patients with hormone-refractory prostate cancer: a Minnie Pearl Cancer Research Network phase II trial. Clin Genitourinary Cancer 5(4):278–283Google Scholar
  107. 107.
    Irvin WJ Jr, Orlowski RZ, Chiu WK, Carey LA, Collichio FA, Bernard PS et al (2010) Phase II study of bortezomib and pegylated liposomal doxorubicin in the treatment of metastatic breast cancer. Clin Breast Cancer 10(6):465–470PubMedGoogle Scholar
  108. 108.
    Li T, Ho L, Piperdi B, Elrafei T, Camacho FJ, Rigas JR et al (2010) Phase II study of the proteasome inhibitor bortezomib (PS-341, Velcade) in chemotherapy-naive patients with advanced stage non-small cell lung cancer (NSCLC). Lung Cancer 68(1):89–93PubMedGoogle Scholar
  109. 109.
    Shah MA, Power DG, Kindler HL, Holen KD, Kemeny MM, Ilson DH et al (2011) A multicenter, phase II study of bortezomib (PS-341) in patients with unresectable or metastatic gastric and gastroesophageal junction adenocarcinoma. Invest New Drugs 29(6):1475–1481PubMedGoogle Scholar
  110. 110.
    Jatoi A, Dakhil SR, Foster NR, Ma C, Rowland KM Jr, Moore DF Jr et al (2008) Bortezomib, paclitaxel, and carboplatin as a first-line regimen for patients with metastatic esophageal, gastric, and gastroesophageal cancer: phase II results from the North Central Cancer Treatment Group (N044B). J Thoracic Oncol 3(5):516–520Google Scholar
  111. 111.
    Pleban E, Bury M, Mlynarczuk I, Wojcik C (2001) Effects of proteasome inhibitor PSI on neoplastic and non-transformed cell lines. Folia Histochem Cytobiol 39(2):133–134Google Scholar
  112. 112.
    Adams J (2003) Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 8(7):307–315PubMedGoogle Scholar
  113. 113.
    Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11(3):239–253PubMedCentralPubMedGoogle Scholar
  114. 114.
    Shah JJ, Orlowski RZ (2009) Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 23(11):1964–1979PubMedGoogle Scholar
  115. 115.
    Orlowski RZ (2004) Bortezomib in combination with other therapies for the treatment of multiple myeloma. J Natl Compr Canc Netw 2(Suppl 4):S16–S20Google Scholar
  116. 116.
    Reddy N, Czuczman MS (2010) Enhancing activity and overcoming chemoresistance in hematologic malignancies with bortezomib: preclinical mechanistic studies. Ann Oncol 21(9):1756–1764PubMedGoogle Scholar
  117. 117.
    Appel A (2011) Drugs: More shots on target. Nature 480(7377):S40–S42PubMedGoogle Scholar
  118. 118.
    Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H et al (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36(10):1278–1284PubMedGoogle Scholar
  119. 119.
    Shuqing L, Jianmin Y, Chongmei H, Hui C, Wang J (2011) Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Exp Hematol 39(12):1117–1118PubMedGoogle Scholar
  120. 120.
    Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR et al (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499PubMedGoogle Scholar
  121. 121.
    Franke NE, Niewerth D, Assaraf YG, van Meerloo J, Vojtekova K, van Zantwijk CH et al (2011) Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26(4):757–768Google Scholar
  122. 122.
    Markovina S, Callander NS, O’Connor SL, Kim J, Werndli JE, Raschko M et al (2008) Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 6(8):1356–1364PubMedCentralPubMedGoogle Scholar
  123. 123.
    Ruschak AM, Slassi M, Kay LE, Schimmer AD (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103(13):1007–1017PubMedGoogle Scholar
  124. 124.
    Samuel D, Martin T, Wang M, Vij R, Jakubowiak AJ, Jagannath S et al (2010) Results of PX-171-003-A1, An Open-Label, Single-Arm, Phase 2 (Ph 2) Study of Carfilzomib (CFZ) In Patients (pts) with Relapsed and Refractory Multiple Myeloma (MM). Blood 116(21):433Google Scholar
  125. 125.
    Vii R, Kaufman JL, Jakubowiak AJ, Wang M, Jagannath S, Kukreti V et al (2011) Final results from the bortezomib-naive group of PX-171-004, a phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory MM. Blood 118(21):369–370Google Scholar
  126. 126.
    Stewart K, Siegel D, Wang M, Kaufman J, Jakubowiak A, Jagannath S et al (2010) Results of Px-171-004, an ongoing open-label, phase ii study of carfilzomib in patients with relapsed and/or refractory multiple myeloma (R/R Mm) with or without prior bortezomib exposure. Haematologica 95:452Google Scholar
  127. 127.
    Vij R, Wang LH, Orlowski RZ, Stewart AK, Jagannath S, Lonial S et al (2009) Carfilzomib (CFZ), a novel proteasome inhibitor for relapsed or refractory multiple myeloma, is associated with minimal peripheral neuropathic effects. Blood 114(22):178–179Google Scholar
  128. 128.
    Arastu-Kapur S, Anderl JL, Kraus M, Parlati F, Shenk KD, Lee SJ et al (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 17(9):2734–2743PubMedGoogle Scholar
  129. 129.
    Wang M, Bensinger W, Martin T, Alsina M (2011) Interim results from PX-171-006, a phase (Ph) II multicenter dose-expansion study of carfilzomib (CFZ), lenalidomide (LEN), and low-dose dexamethasone (loDex) in relapsed and/or refractory multiple myeloma (R/R MM). J Clin Oncol 2011(suppl):abstr 8025Google Scholar
  130. 130.
    Jakubowiak AJ, Dytfeld D, Jagannath S, Vesole DH, Anderson TB, Nordgren BK et al (2011) Final results of a frontline phase 1/2 Study of carfilzomib, lenalidomide, and low-dose dexamethasone (CRd) in multiple myeloma (MM). Blood 118(21):288–289Google Scholar
  131. 131.
    Richardson PG, Spencer A, Cannel P, Harrison SJ, Catley L, Underhill C et al (2011) Phase 1 clinical evaluation of twice-weekly marizomib (NPI-0052), a novel proteasome inhibitor, in patients with relapsed/refractory multiple myeloma (MM). Blood 118(21):140–141Google Scholar
  132. 132.
    Richardson PG, Baz R, Wang LH, Jakubowiak AJ, Berg D, Liu GH et al (2011) Investigational agent MLN9708, an oral proteasome inhibitor, in patients (Pts) with relapsed and/or refractory multiple myeloma (MM): Results from the expansion cohorts of a phase 1 dose-escalation study. Blood 118(21):140Google Scholar
  133. 133.
    Molineaux SM (2012) Molecular pathways: targeting proteasomal protein degradation in cancer. Clin Cancer Res 18(1):15–20PubMedGoogle Scholar
  134. 134.
    Chauhan D, Singh AV, Aujay M, Kirk CJ, Bandi M, Ciccarelli B et al (2010) A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 116(23):4906–4915PubMedCentralPubMedGoogle Scholar
  135. 135.
    Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10(1):29–46PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Karmanos Cancer Institute and Department of PharmacologyWayne State University School of MedicineDetroitUSA

Personalised recommendations