Skip to main content

Proteasome Inhibition as a Novel Strategy for Cancer Treatment

  • Chapter
  • First Online:
Book cover Cell Death Signaling in Cancer Biology and Treatment

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

The proteasome is a multi-subunit protease complex, responsible for the degradation of misfolded, damaged, or short-lived proteins. Indeed, more than 90 % of intracellular proteins are degraded through the ubiquitin–proteasome system (UPS). The UPS is extensively involved in various cellular events, including cell cycle, cell signaling, stress response, and apoptosis. Inhibition of proteasome function could result in growth arrest and/or cell death. The involved molecular mechanisms include dysregulation of the cell cycle, inactivation of NF-κB pathway, disturbance of the pro- and anti-apoptotic balance, induction of unfolded protein response, and induction of oxidative stress. The observation that suppression of proteasome function by small chemical inhibitors was able to induce apoptosis in cancer cells but not in normal cells supports the hypothesis that the proteasome could be a valuable target for cancer treatment. This idea has been validated from benchtop to bedside. In 2003, the first proteasome inhibitor anticancer drug, bortezomib, was approved in the United States for the treatment of multiple myeloma and mantle cell lymphoma. While bortezomib achieved great success in clinical applications, problems such as resistance, dose-limiting toxicities, unsatisfied efficacy in solid tumors, and interaction with some natural compounds have been observed. Therefore, it is necessary to further investigate the proteasome inhibition-mediated mechanism of cell death as well as the development of novel, new-generation proteasome inhibitors with lower toxicity and wider applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12(9):1191–1197

    CAS  PubMed  Google Scholar 

  2. Spataro V, Norbury C, Harris AL (1998) The ubiquitin-proteasome pathway in cancer. Br J Cancer 77(3):448–455

    CAS  PubMed Central  PubMed  Google Scholar 

  3. de Bettignies G, Coux O (2010) Proteasome inhibitors: Dozens of molecules and still counting. Biochimie 92(11):1530–1545

    PubMed  Google Scholar 

  4. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421

    CAS  PubMed  Google Scholar 

  5. Sorokin AV, Kim ER, Ovchinnikov LP (2009) Proteasome system of protein degradation and processing. Biochemistry (Mosc) 74(13):1411–1442

    CAS  Google Scholar 

  6. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360

    CAS  PubMed  Google Scholar 

  7. Orlowski M, Cardozo C, Michaud C (1993) Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32(6):1563–1572

    CAS  PubMed  Google Scholar 

  8. Nandi D, Tahiliani P, Kumar A, Chandu D (2006) The ubiquitin-proteasome system. J Biosci 31(1):137–155

    CAS  PubMed  Google Scholar 

  9. Strehl B, Seifert U, Kruger E, Heink S, Kuckelkorn U, Kloetzel PM (2005) Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 207:19–30

    CAS  PubMed  Google Scholar 

  10. Angeles A, Fung G, Luo H (2012) Immune and non-immune functions of the immunoproteasome. Front Biosci 17:1904–1916

    CAS  Google Scholar 

  11. Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19(1):99–115

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Borissenko L, Groll M (2007) 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107(3):687–717

    CAS  PubMed  Google Scholar 

  13. Tsukamoto S, Yokosawa H (2010) Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy. Planta Med 76(11):1064–1074

    CAS  PubMed  Google Scholar 

  14. Krunic A, Vallat A, Mo S, Lantvit DD, Swanson SM, Orjala J (2010) Scytonemides A and B, cyclic peptides with 20S proteasome inhibitory activity from the cultured cyanobacterium Scytonema hofmanii. J Nat Prod 73(11):1927–1932

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, Ohnuki T et al (2000) TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J Antibiot 53(2):105–109

    CAS  PubMed  Google Scholar 

  16. Nickeleit I, Zender S, Sasse F, Geffers R, Brandes G, Sorensen I et al (2008) Argyrin a reveals a critical role for the tumor suppressor protein p27(kip1) in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 14(1):23–35

    CAS  PubMed  Google Scholar 

  17. Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar AP, Dou QP (2008) Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res 68(18):7283–7292

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC et al (2009) Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 124(10):2450–2459

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    CAS  PubMed  Google Scholar 

  20. Mozzicafreddo M, Cuccioloni M, Cecarini V, Eleuteri AM, Angeletti M (2009) Homology modeling and docking analysis of the interaction between polyphenols and mammalian 20S proteasomes. J Chem Inf Model 49(2):401–409

    CAS  PubMed  Google Scholar 

  21. Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG et al (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113(23):5927–5937

    CAS  PubMed  Google Scholar 

  22. Yang H, Chen D, Cui QC, Yuan X, Dou QP (2006) Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 66(9):4758–4765

    CAS  PubMed  Google Scholar 

  23. Yang H, Shi G, Dou QP (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71(2):426–437

    CAS  PubMed  Google Scholar 

  24. Yang H, Landis-Piwowar KR, Lu D, Yuan P, Li L, Reddy GP et al (2008) Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J Cell Biochem 103(1):234–244

    CAS  PubMed  Google Scholar 

  25. Chen D, Cui QC, Yang H, Dou QP (2006) Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res 66(21):10425–10433

    CAS  PubMed  Google Scholar 

  26. Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP (2005) Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 7(6):R897–R908

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Li X, Wood TE, Sprangers R, Jansen G, Franke NE, Mao X et al (2010) Effect of noncompetitive proteasome inhibition on bortezomib resistance. J Natl Cancer Inst 102(14):1069–1082

    CAS  PubMed  Google Scholar 

  28. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113(19):4667–4676

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C et al (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15(7):781–787

    CAS  PubMed  Google Scholar 

  30. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V et al (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269(5224):682–685

    CAS  PubMed  Google Scholar 

  31. Tambyrajah WS, Bowler LD, Medina-Palazon C, Sinclair AJ (2007) Cell cycle-dependent caspase-like activity that cleaves p27(KIP1) is the beta(1) subunit of the 20S proteasome. Arch Biochem Biophys 466(2):186–193

    CAS  PubMed  Google Scholar 

  32. Zhu Q, Wani G, Yao J, Patnaik S, Wang QE, El-Mahdy MA et al (2007) The ubiquitin-proteasome system regulates p53-mediated transcription at p21waf1 promoter. Oncogene 26(29):4199–4208

    CAS  PubMed  Google Scholar 

  33. Chen F, Chang D, Goh M, Klibanov SA, Ljungman M (2000) Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth Differ 11(5):239–246

    CAS  PubMed  Google Scholar 

  34. Concannon CG, Koehler BF, Reimertz C, Murphy BM, Bonner C, Thurow N et al (2007) Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26(12):1681–1692

    CAS  PubMed  Google Scholar 

  35. Strauss SJ, Higginbottom K, Juliger S, Maharaj L, Allen P, Schenkein D et al (2007) The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67(6):2783–2790

    CAS  PubMed  Google Scholar 

  36. Pandit B, Gartel AL (2011) Proteasome inhibitors induce p53-independent apoptosis in human cancer cells. Am J Pathol 178(1):355–360

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Wagenknecht B, Hermisson M, Eitel K, Weller M (1999) Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem 9(3):117–125

    CAS  PubMed  Google Scholar 

  38. Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 13(22):5433–5441

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785

    CAS  PubMed  Google Scholar 

  40. Sears C, Olesen J, Rubin D, Finley D, Maniatis T (1998) NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem 273(3):1409–1419

    CAS  PubMed  Google Scholar 

  41. Heusch M, Lin L, Geleziunas R, Greene WC (1999) The generation of nfkb2 p52: mechanism and efficiency. Oncogene 18(46):6201–6208

    CAS  PubMed  Google Scholar 

  42. Delic J, Masdehors P, Omura S, Cosset JM, Dumont J, Binet JL et al (1998) The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br J Cancer 77(7):1103–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Voortman J, Resende TP (2007) Abou El Hassan MA, Giaccone G, Kruyt FA. TRAIL therapy in non-small cell lung cancer cells: sensitization to death receptor-mediated apoptosis by proteasome inhibitor bortezomib. Mol Cancer Ther 6(7):2103–2112

    CAS  PubMed  Google Scholar 

  44. Nencioni A, Wille L, Dal Bello G, Boy D, Cirmena G, Wesselborg S et al (2005) Cooperative cytotoxicity of proteasome inhibitors and tumor necrosis factor-related apoptosis-inducing ligand in chemoresistant Bcl-2-overexpressing cells. Clin Cancer Res 11(11):4259–4265

    Google Scholar 

  45. Oyaizu H, Adachi Y, Okumura T, Okigaki M, Oyaizu N, Taketani S et al (2001) Proteasome inhibitor 1 enhances paclitaxel-induced apoptosis in human lung adenocarcinoma cell line. Oncol Rep 8(4):825–829

    Google Scholar 

  46. von Metzler I, Heider U, Mieth M, Lamottke B, Kaiser M, Jakob C et al (2009) Synergistic interaction of proteasome and topoisomerase II inhibition in multiple myeloma. Exp Cell Res 315(14):2471–2478

    Google Scholar 

  47. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D et al (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101(6):2377–2380

    CAS  PubMed  Google Scholar 

  48. Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K et al (2009) Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114(5):1046–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Amschler K, Schon MP, Pletz N, Wallbrecht K, Erpenbeck L, Schon M (2010) NF-kappaB inhibition through proteasome inhibition or IKKbeta blockade increases the susceptibility of melanoma cells to cytostatic treatment through distinct pathways. J Invest Dermatol. 130(4):1073–1086

    CAS  PubMed  Google Scholar 

  50. Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A 97(8):3850–3855

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ding WX, Ni HM, Chen X, Yu J, Zhang L, Yin XM (2007) A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther 6(3):1062–1069

    CAS  PubMed  Google Scholar 

  52. Zhu H, Zhang L, Dong F, Guo W, Wu S, Teraishi F et al (2005) Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene 24(31):4993–4999

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS (2005) The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4(3):443–449

    CAS  PubMed  Google Scholar 

  54. Li C, Li R, Grandis JR, Johnson DE (2008) Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther 7(6):1647–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Pigneux A, Mahon FX, Moreau-Gaudry F, Uhalde M, de Verneuil H, Lacombe F et al (2007) Proteasome inhibition specifically sensitizes leukemic cells to anthracyclin-induced apoptosis through the accumulation of Bim and Bax pro-apoptotic proteins. Cancer Biol Ther 6(4):603–611

    CAS  PubMed  Google Scholar 

  56. Dewson G, Snowden RT, Almond JB, Dyer MJ, Cohen GM (2003) Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22(17):2643–2654

    CAS  PubMed  Google Scholar 

  57. Lang-Rollin I, Maniati M, Jabado O, Vekrellis K, Papantonis S, Rideout HJ et al (2005) Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis 10(4):809–820

    CAS  PubMed  Google Scholar 

  58. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107(1):257–264

    CAS  PubMed  Google Scholar 

  59. Nikiforov MA, Riblett M, Tang WH, Gratchouck V, Zhuang D, Fernandez Y et al (2007) Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc Natl Acad Sci U S A 104(49):19488–19493

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Chen S, Blank JL, Peters T, Liu XJ, Rappoli DM, Pickard MD et al (2010) Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res 70(11):4318–4326

    CAS  PubMed  Google Scholar 

  61. Hu J, Dang N, Menu E, De Bryune E, Xu D, Van Camp B et al (2012) Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood 119(3):826–837

    CAS  PubMed  Google Scholar 

  62. Ri M, Iida S, Ishida T, Ito A, Yano H, Inagaki A et al (2009) Bortezomib-induced apoptosis in mature T-cell lymphoma cells partially depends on upregulation of Noxa and functional repression of Mcl-1. Cancer Sci 100(2):341–348

    CAS  PubMed  Google Scholar 

  63. Gomez-Bougie P, Wuilleme-Toumi S, Menoret E, Trichet V, Robillard N, Philippe M et al (2007) Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res 67(11):5418–5424

    CAS  PubMed  Google Scholar 

  64. Podar K, Gouill SL, Zhang J, Opferman JT, Zorn E, Tai YT et al (2008) A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 27(6):721–731

    CAS  PubMed  Google Scholar 

  65. Yuan BZ, Chapman J, Reynolds SH (2009) Proteasome inhibitors induce apoptosis in human lung cancer cells through a positive feedback mechanism and the subsequent Mcl-1 protein cleavage. Oncogene 28(43):3775–3786

    CAS  PubMed  Google Scholar 

  66. Liu Y, Ye Y (2011) Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 21(6):867–883

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272(14):9086–9092

    CAS  PubMed  Google Scholar 

  68. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A 100(17):9946–9951

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107(12):4907–4916

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Fan WH, Hou Y, Meng FK, Wang XF, Luo YN, Ge PF (2011) Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin 32(5):619–625

    CAS  PubMed  Google Scholar 

  71. Ling YH, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278(36):33714–33723

    CAS  PubMed  Google Scholar 

  72. Du ZX, Zhang HY, Meng X, Guan Y, Wang HQ (2009) Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells. BMC Cancer 9:56

    PubMed Central  PubMed  Google Scholar 

  73. Fribley A, Zeng Q, Wang CY (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24(22):9695–9704

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Papa L, Gomes E, Rockwell P (2007) Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12(8):1389–1405

    CAS  PubMed  Google Scholar 

  75. Lee MH, Hyun DH, Jenner P, Halliwell B (2001) Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem 78(1):32–41

    CAS  PubMed  Google Scholar 

  76. Bieler S, Meiners S, Stangl V, Pohl T, Stangl K (2009) Comprehensive proteomic and transcriptomic analysis reveals early induction of a protective anti-oxidative stress response by low-dose proteasome inhibition. Proteomics 9(12):3257–3267

    CAS  PubMed  Google Scholar 

  77. Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172

    CAS  PubMed  Google Scholar 

  78. Jagannath S, Barlogie B, Berenson JR, Siegel DS, Irwin D, Richardson PG et al (2008) Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma. Br J Haematol 143(4):537–540

    PubMed  Google Scholar 

  79. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617

    CAS  PubMed  Google Scholar 

  80. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    CAS  PubMed  Google Scholar 

  81. Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T et al (2007) Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 110(10):3557–3560

    CAS  PubMed  Google Scholar 

  82. San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Google Scholar 

  83. Mateos MV, Richardson PG, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O et al (2010) Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol 28(13):2259–2266

    CAS  PubMed  Google Scholar 

  84. Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M et al (2011) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 12(5):431–440

    PubMed  Google Scholar 

  85. Jagannath S, Durie BG, Wolf J, Camacho E, Irwin D, Lutzky J et al (2005) Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 129(6):776–783

    CAS  PubMed  Google Scholar 

  86. Jagannath S, Durie BG, Wolf JL, Camacho ES, Irwin D, Lutzky J et al (2009) Extended follow-up of a phase 2 trial of bortezomib alone and in combination with dexamethasone for the frontline treatment of multiple myeloma. Br J Haematol 146(6):619–626

    CAS  PubMed  Google Scholar 

  87. Mikhael JR, Belch AR, Prince HM, Lucio MN, Maiolino A, Corso A et al (2009) High response rate to bortezomib with or without dexamethasone in patients with relapsed or refractory multiple myeloma: results of a global phase 3b expanded access program. Br J Haematol 144(2):169–175

    CAS  PubMed  Google Scholar 

  88. Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M et al (2005) PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 129(6):755–762

    CAS  PubMed  Google Scholar 

  89. Popat R, Oakervee HE, Hallam S, Curry N, Odeh L, Foot N et al (2008) Bortezomib, doxorubicin and dexamethasone (PAD) front-line treatment of multiple myeloma: updated results after long-term follow-up. Br J Haematol 141(4):512–516

    CAS  PubMed  Google Scholar 

  90. Cavo M, Tacchetti P, Patriarca F, Petrucci MT, Pantani L, Galli M et al (2010) Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 376(9758):2075–2085

    CAS  PubMed  Google Scholar 

  91. Driscoll JJ, Burris J, Annunziata CM (2012) Targeting the proteasome with bortezomib in multiple myeloma: update on therapeutic benefit as an upfront single agent, induction regimen for stem-cell transplantation and as maintenance therapy. Am J Ther 19(2):133–144

    PubMed Central  PubMed  Google Scholar 

  92. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339

    PubMed  Google Scholar 

  93. Mateos MV, Oriol A, Martinez-Lopez J, Gutierrez N, Teruel AI, de Paz R et al (2010) Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. Lancet Oncol 11(10):934–941

    CAS  PubMed  Google Scholar 

  94. Palumbo A, Ambrosini MT, Benevolo G, Pregno P, Pescosta N, Callea V et al (2007) Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 109(7):2767–2772

    CAS  PubMed  Google Scholar 

  95. Palumbo A, Bringhen S, Rossi D, Cavalli M, Larocca A, Ria R et al (2010) Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: a randomized controlled trial. J Clin Oncol 28(34):5101–5109

    CAS  PubMed  Google Scholar 

  96. Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24(30):4867–4874

    PubMed  Google Scholar 

  97. Goy A, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S et al (2009) Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol 20(3):520–525

    CAS  PubMed  Google Scholar 

  98. Kouroukis CT, Fernandez LA, Crump M, Gascoyne RD, Chua NS, Buckstein R et al (2011) A phase II study of bortezomib and gemcitabine in relapsed mantle cell lymphoma from the National Cancer Institute of Canada Clinical Trials Group (IND 172). Leukemia lymphoma 52(3):394–399

    CAS  PubMed  Google Scholar 

  99. Yang H, Zonder JA, Dou QP (2009) Clinical development of novel proteasome inhibitors for cancer treatment. Expert Opin Investig Drugs 18(7):957–971

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kuppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5(4):251–262

    PubMed  Google Scholar 

  101. de Vos S, Goy A, Dakhil SR, Saleh MN, McLaughlin P, Belt R et al (2009) Multicenter randomized phase II study of weekly or twice-weekly bortezomib plus rituximab in patients with relapsed or refractory follicular or marginal-zone B-cell lymphoma. J Clin Oncol 27(30):5023–5030

    PubMed  Google Scholar 

  102. Coiffier B, Osmanov EA, Hong X, Scheliga A, Mayer J, Offner F et al (2011) Bortezomib plus rituximab versus rituximab alone in patients with relapsed, rituximab-naive or rituximab-sensitive, follicular lymphoma: a randomised phase 3 trial. Lancet Oncol. 12(8):773–784

    CAS  PubMed  Google Scholar 

  103. Fowler N, Kahl BS, Lee P, Matous JV, Cashen AF, Jacobs SA et al (2011) Bortezomib, bendamustine, and rituximab in patients with relapsed or refractory follicular lymphoma: the phase II VERTICAL study. J Clin Oncol 29(25):3389–3395

    CAS  PubMed  Google Scholar 

  104. Ruan J, Martin P, Furman RR, Lee SM, Cheung K, Vose JM et al (2011) Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol 29(6):690–697

    CAS  PubMed  Google Scholar 

  105. Morris MJ, Kelly WK, Slovin S, Ryan C, Eicher C, Heller G et al (2007) A phase II trial of bortezomib and prednisone for castration resistant metastatic prostate cancer. J Urology 178(6):2378–2383, discussion 83-4

    Google Scholar 

  106. Hainsworth JD, Meluch AA, Spigel DR, Barton J Jr, Simons L, Meng C et al (2007) Weekly docetaxel and bortezomib as first-line treatment for patients with hormone-refractory prostate cancer: a Minnie Pearl Cancer Research Network phase II trial. Clin Genitourinary Cancer 5(4):278–283

    CAS  Google Scholar 

  107. Irvin WJ Jr, Orlowski RZ, Chiu WK, Carey LA, Collichio FA, Bernard PS et al (2010) Phase II study of bortezomib and pegylated liposomal doxorubicin in the treatment of metastatic breast cancer. Clin Breast Cancer 10(6):465–470

    CAS  PubMed  Google Scholar 

  108. Li T, Ho L, Piperdi B, Elrafei T, Camacho FJ, Rigas JR et al (2010) Phase II study of the proteasome inhibitor bortezomib (PS-341, Velcade) in chemotherapy-naive patients with advanced stage non-small cell lung cancer (NSCLC). Lung Cancer 68(1):89–93

    PubMed  Google Scholar 

  109. Shah MA, Power DG, Kindler HL, Holen KD, Kemeny MM, Ilson DH et al (2011) A multicenter, phase II study of bortezomib (PS-341) in patients with unresectable or metastatic gastric and gastroesophageal junction adenocarcinoma. Invest New Drugs 29(6):1475–1481

    CAS  PubMed  Google Scholar 

  110. Jatoi A, Dakhil SR, Foster NR, Ma C, Rowland KM Jr, Moore DF Jr et al (2008) Bortezomib, paclitaxel, and carboplatin as a first-line regimen for patients with metastatic esophageal, gastric, and gastroesophageal cancer: phase II results from the North Central Cancer Treatment Group (N044B). J Thoracic Oncol 3(5):516–520

    Google Scholar 

  111. Pleban E, Bury M, Mlynarczuk I, Wojcik C (2001) Effects of proteasome inhibitor PSI on neoplastic and non-transformed cell lines. Folia Histochem Cytobiol 39(2):133–134

    Google Scholar 

  112. Adams J (2003) Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 8(7):307–315

    CAS  PubMed  Google Scholar 

  113. Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11(3):239–253

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Shah JJ, Orlowski RZ (2009) Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 23(11):1964–1979

    CAS  PubMed  Google Scholar 

  115. Orlowski RZ (2004) Bortezomib in combination with other therapies for the treatment of multiple myeloma. J Natl Compr Canc Netw 2(Suppl 4):S16–S20

    Google Scholar 

  116. Reddy N, Czuczman MS (2010) Enhancing activity and overcoming chemoresistance in hematologic malignancies with bortezomib: preclinical mechanistic studies. Ann Oncol 21(9):1756–1764

    CAS  PubMed  Google Scholar 

  117. Appel A (2011) Drugs: More shots on target. Nature 480(7377):S40–S42

    CAS  PubMed  Google Scholar 

  118. Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H et al (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36(10):1278–1284

    CAS  PubMed  Google Scholar 

  119. Shuqing L, Jianmin Y, Chongmei H, Hui C, Wang J (2011) Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Exp Hematol 39(12):1117–1118

    PubMed  Google Scholar 

  120. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR et al (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499

    CAS  PubMed  Google Scholar 

  121. Franke NE, Niewerth D, Assaraf YG, van Meerloo J, Vojtekova K, van Zantwijk CH et al (2011) Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26(4):757–768

    Google Scholar 

  122. Markovina S, Callander NS, O’Connor SL, Kim J, Werndli JE, Raschko M et al (2008) Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 6(8):1356–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Ruschak AM, Slassi M, Kay LE, Schimmer AD (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103(13):1007–1017

    CAS  PubMed  Google Scholar 

  124. Samuel D, Martin T, Wang M, Vij R, Jakubowiak AJ, Jagannath S et al (2010) Results of PX-171-003-A1, An Open-Label, Single-Arm, Phase 2 (Ph 2) Study of Carfilzomib (CFZ) In Patients (pts) with Relapsed and Refractory Multiple Myeloma (MM). Blood 116(21):433

    Google Scholar 

  125. Vii R, Kaufman JL, Jakubowiak AJ, Wang M, Jagannath S, Kukreti V et al (2011) Final results from the bortezomib-naive group of PX-171-004, a phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory MM. Blood 118(21):369–370

    Google Scholar 

  126. Stewart K, Siegel D, Wang M, Kaufman J, Jakubowiak A, Jagannath S et al (2010) Results of Px-171-004, an ongoing open-label, phase ii study of carfilzomib in patients with relapsed and/or refractory multiple myeloma (R/R Mm) with or without prior bortezomib exposure. Haematologica 95:452

    Google Scholar 

  127. Vij R, Wang LH, Orlowski RZ, Stewart AK, Jagannath S, Lonial S et al (2009) Carfilzomib (CFZ), a novel proteasome inhibitor for relapsed or refractory multiple myeloma, is associated with minimal peripheral neuropathic effects. Blood 114(22):178–179

    Google Scholar 

  128. Arastu-Kapur S, Anderl JL, Kraus M, Parlati F, Shenk KD, Lee SJ et al (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 17(9):2734–2743

    CAS  PubMed  Google Scholar 

  129. Wang M, Bensinger W, Martin T, Alsina M (2011) Interim results from PX-171-006, a phase (Ph) II multicenter dose-expansion study of carfilzomib (CFZ), lenalidomide (LEN), and low-dose dexamethasone (loDex) in relapsed and/or refractory multiple myeloma (R/R MM). J Clin Oncol 2011(suppl):abstr 8025

    Google Scholar 

  130. Jakubowiak AJ, Dytfeld D, Jagannath S, Vesole DH, Anderson TB, Nordgren BK et al (2011) Final results of a frontline phase 1/2 Study of carfilzomib, lenalidomide, and low-dose dexamethasone (CRd) in multiple myeloma (MM). Blood 118(21):288–289

    Google Scholar 

  131. Richardson PG, Spencer A, Cannel P, Harrison SJ, Catley L, Underhill C et al (2011) Phase 1 clinical evaluation of twice-weekly marizomib (NPI-0052), a novel proteasome inhibitor, in patients with relapsed/refractory multiple myeloma (MM). Blood 118(21):140–141

    Google Scholar 

  132. Richardson PG, Baz R, Wang LH, Jakubowiak AJ, Berg D, Liu GH et al (2011) Investigational agent MLN9708, an oral proteasome inhibitor, in patients (Pts) with relapsed and/or refractory multiple myeloma (MM): Results from the expansion cohorts of a phase 1 dose-escalation study. Blood 118(21):140

    Google Scholar 

  133. Molineaux SM (2012) Molecular pathways: targeting proteasomal protein degradation in cancer. Clin Cancer Res 18(1):15–20

    CAS  PubMed  Google Scholar 

  134. Chauhan D, Singh AV, Aujay M, Kirk CJ, Bandi M, Ciccarelli B et al (2010) A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 116(23):4906–4915

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10(1):29–46

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sara Schmitt and Daniela Buac for critical reading of the manuscript. This work was partially supported by the National Cancer Institute (1R01CA120009, 3R01CA120009-04S1, and 5R01CA127258-05, to QPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Ping Dou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shen, M., Dou, Q.P. (2013). Proteasome Inhibition as a Novel Strategy for Cancer Treatment. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_12

Download citation

Publish with us

Policies and ethics