Skip to main content

SMAC IAP Addiction in Cancer

  • Chapter
  • First Online:
Cell Death Signaling in Cancer Biology and Treatment

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Deregulation of apoptosis is a hallmark of human cancer. Inhibitor of apoptosis proteins (IAPs) were first identified as inhibitors of caspases and apoptosis. They were later shown to play important roles in signal transduction to promote cell survival and proliferation beyond apoptosis, a function conserved in lower eukaryotes. Genetic alterations of cIAPs, as well as widespread altered expression in IAPs and their endogenous inhibitors such as SMAC, have been reported to be associated with disease progression and chemoresistance in cancer. Several strategies have been devised to target IAPs in cancer including rationally designed small-molecule IAP antagonists based on the conserved interaction between IAPs and SMAC. Known as SMAC mimetics, these agents are showing promise as novel cancer therapeutics and help reveal novel functions of IAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  2. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164

    Article  CAS  PubMed  Google Scholar 

  3. LaCasse EC et al (2008) IAP-targeted therapies for cancer. Oncogene 27(48):6252–6275

    Article  CAS  PubMed  Google Scholar 

  4. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124

    Article  CAS  PubMed  Google Scholar 

  5. Keats JJ et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Altieri DC (2006) Targeted therapy by disabling crossroad signaling networks: the survivin paradigm. Mol Cancer Ther 5(3):478–482

    Article  CAS  PubMed  Google Scholar 

  7. Hunter AM, LaCasse EC, Korneluk RG (2007) The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12(9):1543–1568

    Article  CAS  PubMed  Google Scholar 

  8. Moore PS, Chang Y (2010) Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 10(12):878–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    Article  CAS  PubMed  Google Scholar 

  10. Mocarski ES, Upton JW, Kaiser WJ (2012) Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol 12(2):79–88

    CAS  Google Scholar 

  11. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67(4):2168–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68(4):2521–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6(4):287–297

    Article  CAS  PubMed  Google Scholar 

  14. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    Article  CAS  PubMed  Google Scholar 

  15. Ashkenazi A (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 19(3–4):325–331

    Article  CAS  PubMed  Google Scholar 

  16. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26(9):1324–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu J, Zhang L (2004) Apoptosis in human cancer cells. Curr Opin Oncol 16(1):19–24

    Article  PubMed  Google Scholar 

  18. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604

    Article  CAS  PubMed  Google Scholar 

  19. Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331(3):851–858

    Article  CAS  PubMed  Google Scholar 

  20. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18(4):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15(22):2922–2933

    CAS  PubMed  Google Scholar 

  22. Du C et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki Y et al (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8(3):613–621

    Article  CAS  PubMed  Google Scholar 

  24. Joza N et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410(6828):549–554

    Article  CAS  PubMed  Google Scholar 

  25. Wang X et al (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298(5598):1587–1592

    Article  CAS  PubMed  Google Scholar 

  26. Luo X et al (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490

    Article  CAS  PubMed  Google Scholar 

  27. Li H et al (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501

    Article  CAS  PubMed  Google Scholar 

  28. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun C et al (1999) NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401(6755):818–822

    Article  CAS  PubMed  Google Scholar 

  30. Silke J et al (2001) Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J 20(12):3114–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang Y et al (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104(5):781–790

    CAS  PubMed  Google Scholar 

  32. Chai J et al (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104(5):769–780

    Article  CAS  PubMed  Google Scholar 

  33. Riedl SJ et al (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104(5):791–800

    Article  CAS  PubMed  Google Scholar 

  34. Srinivasula SM et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410(6824):112–116

    Article  CAS  PubMed  Google Scholar 

  35. Shiozaki EN et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527

    Article  CAS  PubMed  Google Scholar 

  36. Wang SL et al (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463

    Article  CAS  PubMed  Google Scholar 

  37. Ditzel M et al (2008) Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 32(4):540–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98(15):8662–8667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi YE et al (2009) The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem 284(19):12772–12782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907

    Article  CAS  PubMed  Google Scholar 

  41. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9(3):459–470

    Article  CAS  PubMed  Google Scholar 

  42. Deveraux QL et al (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18(19):5242–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10(8):561–574

    Article  CAS  PubMed  Google Scholar 

  44. Varfolomeev E et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131(4):669–681

    Article  CAS  PubMed  Google Scholar 

  45. Gaither A et al (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 67(24):11493–11498

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133(4):693–703

    Article  CAS  PubMed  Google Scholar 

  47. Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  CAS  PubMed  Google Scholar 

  48. He S et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111

    Article  CAS  PubMed  Google Scholar 

  49. Feoktistova M et al (2012) Pick your poison: the ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle 11(3):460–467

    Article  CAS  PubMed  Google Scholar 

  50. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    Article  CAS  PubMed  Google Scholar 

  51. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882

    Article  CAS  PubMed  Google Scholar 

  52. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62

    Article  CAS  PubMed  Google Scholar 

  54. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288

    Article  CAS  PubMed  Google Scholar 

  55. Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458(7237):430–437

    Article  CAS  PubMed  Google Scholar 

  56. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    Article  CAS  PubMed  Google Scholar 

  57. Leulier F et al (2006) The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol Cell Biol 26(21):7821–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gesellchen V et al (2005) An RNA interference screen identifies Inhibitor of apoptosis protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep 6(10):979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kleino A et al (2005) Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J 24(19):3423–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Orme M, Meier P (2009) Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14(8):950–960

    Article  PubMed  Google Scholar 

  61. Winkles JA (2008) The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov 7(5):411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vallabhapurapu S et al (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9(12):1364–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zarnegar BJ et al (2008) Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9(12):1371–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Galluzzi L et al (2011) Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol 289:1–35

    Article  CAS  PubMed  Google Scholar 

  65. Petersen SL et al (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12(5):445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vercammen D et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187(9):1477–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vanden Berghe T et al (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 278(8):5622–5629

    Article  CAS  PubMed  Google Scholar 

  68. Zheng L et al (2006) Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol 26(9):3505–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geserick P et al (2009) Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 187(7):1037–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tenev T et al (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448

    Article  CAS  PubMed  Google Scholar 

  72. Biton S, Ashkenazi A (2011) NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell 145(1):92–103

    Article  CAS  PubMed  Google Scholar 

  73. Verhagen AM et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53

    Article  CAS  PubMed  Google Scholar 

  74. Steller H (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15(7):1132–1138

    Article  CAS  PubMed  Google Scholar 

  75. Shi Y (2004) Caspase activation: revisiting the induced proximity model. Cell 117(7):855–858

    Article  CAS  PubMed  Google Scholar 

  76. Vucic D et al (2002) SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J Biol Chem 277(14):12275–12279

    Article  CAS  PubMed  Google Scholar 

  77. Davoodi J et al (2004) Neuronal apoptosis-inhibitory protein does not interact with Smac and requires ATP to bind caspase-9. J Biol Chem 279(39):40622–40628

    Article  CAS  PubMed  Google Scholar 

  78. Hao Y et al (2004) Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol 6(9):849–860

    Article  CAS  PubMed  Google Scholar 

  79. Qiu XB, Goldberg AL (2005) The membrane-associated inhibitor of apoptosis protein, BRUCE/Apollon, antagonizes both the precursor and mature forms of Smac and caspase-9. J Biol Chem 280(1):174–182

    CAS  PubMed  Google Scholar 

  80. Shiozaki EN, Shi Y (2004) Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 29(9):486–494

    Article  CAS  PubMed  Google Scholar 

  81. Chai J et al (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406(6798):855–862

    Article  CAS  PubMed  Google Scholar 

  82. Liu Z et al (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408(6815):1004–1008

    Article  CAS  PubMed  Google Scholar 

  83. Wu G et al (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408(6815):1008–1012

    Article  CAS  PubMed  Google Scholar 

  84. Hegde R et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277(1):432–438

    Article  CAS  PubMed  Google Scholar 

  85. Verhagen AM et al (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454

    Article  CAS  PubMed  Google Scholar 

  86. Martins LM et al (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277(1):439–444

    Article  CAS  PubMed  Google Scholar 

  87. Liston P et al (2001) Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol 3(2):128–133

    Article  CAS  PubMed  Google Scholar 

  88. Arora V et al (2007) Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex. J Biol Chem 282(36):26202–26209

    Article  CAS  PubMed  Google Scholar 

  89. Kashkar H (2010) X-linked inhibitor of apoptosis: a chemoresistance factor or a hollow promise. Clin Cancer Res 16(18):4496–4502

    Article  CAS  PubMed  Google Scholar 

  90. West T et al (2009) Lack of X-linked inhibitor of apoptosis protein leads to increased apoptosis and tissue loss following neonatal brain injury. ASN Neuro 1(1):e00004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bauler LD, Duckett CS, O’Riordan MX (2008) XIAP regulates cytosol-specific innate immunity to Listeria infection. PLoS Pathog 4(8):e1000142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Cummins JM et al (2004) X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 64(9):3006–3008

    Article  CAS  PubMed  Google Scholar 

  93. Conte D et al (2006) Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol Cell Biol 26(2):699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moulin M et al (2012) IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J 31(7):1679–1691. doi:10.1038/ebomj.2012.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gardam S et al (2011) Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 117(15):4041–4051

    Article  CAS  PubMed  Google Scholar 

  96. Bank A et al (2008) SMAC mimetics sensitize nonsteroidal anti-inflammatory drug-induced apoptosis by promoting caspase-3-mediated cytochrome c release. Cancer Res 68(1):276–284

    Article  CAS  PubMed  Google Scholar 

  97. Kohli M et al (2004) SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl Acad Sci USA 101(48):16897–16902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Okada H et al (2002) Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 22(10):3509–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiu W et al (2010) Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc Natl Acad Sci USA 107(46):20027–20032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martins LM et al (2004) Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24(22):9848–9862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70

    Article  CAS  PubMed  Google Scholar 

  102. Imoto I et al (2001) Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 61(18):6629–6634

    CAS  PubMed  Google Scholar 

  103. Imoto I et al (2002) Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res 62(17):4860–4866

    CAS  PubMed  Google Scholar 

  104. Zender L et al (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125(7):1253–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dai Z et al (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 12(7):791–801

    Article  CAS  PubMed  Google Scholar 

  106. Bashyam MD et al (2005) Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7(6):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reardon DA et al (1997) Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 57(18):4042–4047

    CAS  PubMed  Google Scholar 

  108. Weber RG et al (1996) Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Lab Invest 74(1):108–119

    CAS  PubMed  Google Scholar 

  109. Ma O et al (2009) MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res 69(6):2559–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dierlamm J et al (1999) The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93(11):3601–3609

    CAS  PubMed  Google Scholar 

  111. Akagi T et al (1999) A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 18(42):5785–5794

    Article  CAS  PubMed  Google Scholar 

  112. Zhou H, Du MQ, Dixit VM (2005) Constitutive NF-kappaB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 7(5):425–431

    Article  CAS  PubMed  Google Scholar 

  113. Morgan JA et al (1999) Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res 59(24):6205–6213

    CAS  PubMed  Google Scholar 

  114. Varfolomeev E et al (2006) The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2. J Biol Chem 281(39):29022–29029

    Article  CAS  PubMed  Google Scholar 

  115. Annunziata CM et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamaguchi N et al (2009) Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci 100(9):1668–1674

    Article  CAS  PubMed  Google Scholar 

  117. Wharry CE et al (2009) Constitutive non-canonical NF kappaB signaling in pancreatic cancer cells. Cancer Biol Ther 8(16):1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xiang G et al (2009) Expression of X-linked inhibitor of apoptosis protein in human colorectal cancer and its correlation with prognosis. J Surg Oncol 100(8):708–712

    Article  CAS  PubMed  Google Scholar 

  119. Augello C et al (2009) Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 9:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Shibata T et al (2007) Disturbed expression of the apoptosis regulators XIAP, XAF1, and Smac/DIABLO in gastric adenocarcinomas. Diagn Mol Pathol 16(1):1–8

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y et al (2011) X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma. Diagn Pathol 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hiscutt EL et al (2010) Targeting X-linked inhibitor of apoptosis protein to increase the efficacy of endoplasmic reticulum stress-induced apoptosis for melanoma therapy. J Invest Dermatol 130(9):2250–2258

    Article  CAS  PubMed  Google Scholar 

  123. Qi S et al (2008) Expression of cIAP-1 correlates with nodal metastasis in squamous cell carcinoma of the tongue. Int J Oral Maxillofac Surg 37(11):1047–1053

    Article  CAS  PubMed  Google Scholar 

  124. Krajewska M et al (2005) Analysis of apoptosis protein expression in early-stage colorectal cancer suggests opportunities for new prognostic biomarkers. Clin Cancer Res 11(15):5451–5461

    Article  CAS  PubMed  Google Scholar 

  125. Esposito I et al (2007) Overexpression of cellular inhibitor of apoptosis protein 2 is an early event in the progression of pancreatic cancer. J Clin Pathol 60(8):885–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vucic D et al (2000) ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 10(21):1359–1366

    Article  CAS  PubMed  Google Scholar 

  127. Wagener N et al (2007) Expression of inhibitor of apoptosis protein Livin in renal cell carcinoma and non-tumorous adult kidney. Br J Cancer 97(9):1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gong J et al (2005) Melanoma inhibitor of apoptosis protein is expressed differentially in melanoma and melanocytic naevus, but similarly in primary and metastatic melanomas. J Clin Pathol 58(10):1081–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kempkensteffen C et al (2007) Expression of the apoptosis inhibitor livin in renal cell carcinomas: correlations with pathology and outcome. Tumour Biol 28(3):132–138

    Article  CAS  PubMed  Google Scholar 

  130. Gazzaniga P et al (2003) Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the progression of superficial bladder cancer. Ann Oncol 14(1):85–90

    Article  CAS  PubMed  Google Scholar 

  131. El-Mesallamy HO, Hegab HM, Kamal AM (2011) Expression of inhibitor of apoptosis protein (IAP) livin/BIRC7 in acute leukemia in adults: correlation with prognostic factors and outcome. Leuk Res 35(12):1616–1622

    Article  CAS  PubMed  Google Scholar 

  132. Nedelcu T et al (2008) Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res Clin Oncol 134(2):237–244

    Article  CAS  PubMed  Google Scholar 

  133. Kim DK et al (2005) Expression of inhibitor-of-apoptosis protein (IAP) livin by neuroblastoma cells: correlation with prognostic factors and outcome. Pediatr Dev Pathol 8(6):621–629

    Article  CAS  PubMed  Google Scholar 

  134. Duffy MJ et al (2007) Survivin: a promising tumor biomarker. Cancer Lett 249(1):49–60

    Article  CAS  PubMed  Google Scholar 

  135. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917–921

    Article  CAS  PubMed  Google Scholar 

  136. Ambrosini G et al (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 273(18):11177–11182

    Article  CAS  PubMed  Google Scholar 

  137. Endo K et al (2009) Clinical significance of Smac/DIABLO expression in colorectal cancer. Oncol Rep 21(2):351–355

    PubMed  Google Scholar 

  138. Xu Y et al (2011) Role of smac in determining the chemotherapeutic response of esophageal squamous cell carcinoma. Clin Cancer Res 17(16):5412–5422

    Article  CAS  PubMed  Google Scholar 

  139. Martinez-Ruiz G et al (2008) Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res 27:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Fong WG et al (2000) Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 70(1):113–122

    Article  CAS  PubMed  Google Scholar 

  141. Sekimura A et al (2004) Expression of Smac/DIABLO is a novel prognostic marker in lung cancer. Oncol Rep 11(4):797–802

    CAS  PubMed  Google Scholar 

  142. Pluta P et al (2011) Correlation of Smac/DIABLO protein expression with the clinico-pathological features of breast cancer patients. Neoplasma 58(5):430–435

    Article  CAS  PubMed  Google Scholar 

  143. Mizutani Y, Katsuoka Y, Bonavida B (2010) Prognostic significance of second mitochondria-derived activator of caspase (Smac/DIABLO) expression in bladder cancer and target for therapy. Int J Oncol 37(2):503–508

    Article  CAS  PubMed  Google Scholar 

  144. Mizutani Y et al (2005) Downregulation of Smac/DIABLO expression in renal cell carcinoma and its prognostic significance. J Clin Oncol 23(3):448–454

    Article  CAS  PubMed  Google Scholar 

  145. Kempkensteffen C et al (2008) Expression levels of the mitochondrial IAP antagonists Smac/DIABLO and Omi/HtrA2 in clear-cell renal cell carcinomas and their prognostic value. J Cancer Res Clin Oncol 134(5):543–550

    Article  CAS  PubMed  Google Scholar 

  146. Dobrzycka B et al (2010) Prognostic significance of smac/DIABLO in endometrioid endometrial cancer. Folia Histochem Cytobiol 48(4):678–681

    PubMed  Google Scholar 

  147. Arellano-Llamas A et al (2006) High Smac/DIABLO expression is associated with early local recurrence of cervical cancer. BMC Cancer 6:256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Pluta A et al (2010) Influence of high expression of Smac/DIABLO protein on the clinical outcome in acute myeloid leukemia patients. Leuk Res 34(10):1308–1313

    Article  CAS  PubMed  Google Scholar 

  149. Ndubaku C et al (2009) Targeting inhibitor of apoptosis proteins for therapeutic intervention. Future Med Chem 1(8):1509–1525

    Article  CAS  PubMed  Google Scholar 

  150. Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13(20):5995–6000

    Article  CAS  PubMed  Google Scholar 

  151. Wang S (2011) Design of small-molecule Smac mimetics as IAP antagonists. Curr Top Microbiol Immunol 348:89–113

    CAS  PubMed  Google Scholar 

  152. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21(15):2283–2294

    Article  CAS  PubMed  Google Scholar 

  153. Li L et al (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305(5689):1471–1474

    Article  CAS  PubMed  Google Scholar 

  154. Arnt CR et al (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277(46):44236–44243

    Article  CAS  PubMed  Google Scholar 

  155. Yang L et al (2003) Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 63(4):831–837

    CAS  PubMed  Google Scholar 

  156. Sun H et al (2007) Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 129(49):15279–15294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bertrand MJ et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700

    Article  CAS  PubMed  Google Scholar 

  158. Varfolomeev E et al (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 283(36):24295–24299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vince JE et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131(4):682–693

    Article  CAS  PubMed  Google Scholar 

  160. Gao Z et al (2007) A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. dynamic and cooperative regulation of XIAP by Smac/Diablo. J Biol Chem 282(42):30718–30727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Varfolomeev E et al (2009) X chromosome-linked inhibitor of apoptosis regulates cell death induction by proapoptotic receptor agonists. J Biol Chem 284(50):34553–34560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sun Q et al (2011) Smac Modulates chemosensitivity in head and neck cancer cells through the mitochondrial apoptotic pathway. Clin Cancer Res 17(8):2361–2372 [Epub ahead of print]

    Article  CAS  Google Scholar 

  163. Feltham R et al (2011) Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J Biol Chem 286(19):17015–17028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mace PD et al (2008) Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J Biol Chem 283(46):31633–31640

    Article  CAS  PubMed  Google Scholar 

  165. Dueber EC et al (2011) Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334(6054):376–380

    Article  CAS  PubMed  Google Scholar 

  166. Dineen SP et al (2010) Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Res 70(7):2852–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cheung HH et al (2009) Down-regulation of c-FLIP enhances death of cancer cells by smac mimetic compound. Cancer Res 69(19):7729–7738

    Article  CAS  PubMed  Google Scholar 

  168. Lu J et al (2011) Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment. Mol Cancer Ther 10(5):902–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Foster FM et al (2009) Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res 11(3):R41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Aird KM et al (2010) X-linked inhibitor of apoptosis protein inhibits apoptosis in inflammatory breast cancer cells with acquired resistance to an ErbB1/2 tyrosine kinase inhibitor. Mol Cancer Ther 9(5):1432–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fulda S et al (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8(8):808–815

    CAS  PubMed  Google Scholar 

  172. Guo F et al (2002) Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99(9):3419–3426

    Article  CAS  PubMed  Google Scholar 

  173. Ren X et al (2007) Bypass NFkappaB-mediated survival pathways by TRAIL and Smac. Cancer Biol Ther 6(7):1031–1035

    Article  CAS  PubMed  Google Scholar 

  174. Stadel D et al (2010) TRAIL-induced apoptosis is preferentially mediated via TRAIL receptor 1 in pancreatic carcinoma cells and profoundly enhanced by XIAP inhibitors. Clin Cancer Res 16(23):5734–5749

    Article  CAS  PubMed  Google Scholar 

  175. Siegelin MD, Gaiser T, Siegelin Y (2009) The XIAP inhibitor embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem Int 55(6):423–430

    Article  CAS  PubMed  Google Scholar 

  176. Mori T et al (2007) Effect of the XIAP inhibitor embelin on TRAIL-induced apoptosis of pancreatic cancer cells. J Surg Res 142(2):281–286

    Article  CAS  PubMed  Google Scholar 

  177. Loeder S et al (2009) A novel paradigm to trigger apoptosis in chronic lymphocytic leukemia. Cancer Res 69(23):8977–8986

    Article  CAS  PubMed  Google Scholar 

  178. Kater AP et al (2005) Inhibitors of XIAP sensitize CD40-activated chronic lymphocytic leukemia cells to CD95-mediated apoptosis. Blood 106(5):1742–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jost PJ et al (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Feoktistova M et al (2011) cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43(3):449–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fingas CD et al (2010) A smac mimetic reduces TNF related apoptosis inducing ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells. Hepatology 52(2):550–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Schimmer AD et al (2006) Targeting XIAP for the treatment of malignancy. Cell Death Differ 13(2):179–188

    Article  CAS  PubMed  Google Scholar 

  183. Wu TY et al (2003) Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol 10(8):759–767

    Article  CAS  PubMed  Google Scholar 

  184. Schimmer AD et al (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5(1):25–35

    Article  CAS  PubMed  Google Scholar 

  185. Dean EJ et al (2010) A small molecule inhibitor of XIAP induces apoptosis and synergises with vinorelbine and cisplatin in NSCLC. Br J Cancer 102(1):97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cheng YJ et al (2010) XIAP-mediated protection of H460 lung cancer cells against cisplatin. Eur J Pharmacol 627(1–3):75–84

    Article  CAS  PubMed  Google Scholar 

  187. LaCasse EC et al (2006) Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 12(17):5231–5241

    Article  CAS  PubMed  Google Scholar 

  188. Holt SV et al (2011) Down-regulation of XIAP by AEG35156 in paediatric tumour cells induces apoptosis and sensitises cells to cytotoxic agents. Oncol Rep 25(4):1177–1181

    CAS  PubMed  Google Scholar 

  189. Hu Y et al (2003) Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res 9(7):2826–2836

    CAS  PubMed  Google Scholar 

  190. Amantana A et al (2004) X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 3(6):699–707

    CAS  PubMed  Google Scholar 

  191. Dean E et al (2009) Phase I trial of AEG35156 administered as a 7 and 3 day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol 27(10):1660–1666

    Article  CAS  PubMed  Google Scholar 

  192. Schimmer AD et al (2009) Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol 27(28):4741–4746

    Article  CAS  PubMed  Google Scholar 

  193. Crnkovic-Mertens I et al (2006) Isoform-specific silencing of the livin gene by RNA interference defines Livin beta as key mediator of apoptosis inhibition in HeLa cells. J Mol Med (Berl) 84(3):232–240

    Article  CAS  Google Scholar 

  194. Tseng PH et al (2010) Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11(1):70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim S et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457(7225):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wu Y, Zhou BP (2010) TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102(4):639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Petersen SL et al (2010) Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression. Proc Natl Acad Sci USA 107(26):11936–11941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5(11):876–885

    Article  CAS  PubMed  Google Scholar 

  199. Zhang L, Ming L, Yu J (2007) BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat 10(6):207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Flygare J et al (2012) The discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 55(9):4101–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cai Q et al (2011) A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem 54(8):2714–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Infante JR (2010) A phase I study of LCL-161, an oral IAP inhibitor, in patients with advanced cancer. In: Proceedings of the 101st annual meeting of the american association for cancer research. Washington

    Google Scholar 

  203. Sikic B (2011) Safety, pharmacokinetics (PK), and pharmacodynamics (PD) of HGS1029, an inhibitor of apoptosis protein (IAP) inhibitor, in patients (Pts) with advanced solid tumors: Results of a phase I study. J Clin Oncol (Meeting abstract)

    Google Scholar 

  204. Amaravadi RK (2011) Phase 1 study of the Smac mimetic TL32711 in adult subjects with advanced solid tumors and lymphoma to evaluate safety, pharmacokinetics, pharmacodynamics and antitumor activity. In: Proceedings of the 102nd annual meeting of the american association for cancer research. Orlando, Florida

    Google Scholar 

  205. Weisberg E et al (2010) Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 24(12):2100–2109

    Article  CAS  PubMed  Google Scholar 

  206. Mahadevan D et al (2012) Phase I trial of AEG35156 an antisense oligonucleotide to XIAP plus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma. Am J Clin Oncol

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Lin Zhang for critical reading and comments, and Mrs. Laurice Vance-Carr for excellent secretarial assistance. The work in authors’ laboratory is supported in part by NIH grants CA129829, UO1-DK085570, American Cancer Society grant RGS-10-124-01-CCE, and Flight Attendant Medical Research Institute (FAMRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, M.F., He, K., Yu, J. (2013). SMAC IAP Addiction in Cancer. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_10

Download citation

Publish with us

Policies and ethics