Skip to main content

Feasibility and Duality

  • Chapter
  • First Online:
Optimization

Part of the book series: Springer Texts in Statistics ((STS,volume 95))

  • 12k Accesses

Abstract

This chapter provides a concrete introduction to several advanced topics in optimization theory. Specifying an interior feasible point is the first issue that must be faced in applying a barrier method. Given an exterior point, Dykstra’s algorithm [21, 70, 79] finds the closest point in the intersection \(\cap _{i=0}^{r-1}C_{i}\) of a finite number of closed convex sets. If C i is defined by the convex constraint \(h_{i}(\boldsymbol{x}) \leq 0\), then one obvious tactic for finding an interior point is to replace C i by the set \(C_{i}(\epsilon ) =\{ \boldsymbol{x} : h_{j}(\boldsymbol{x}) \leq -\epsilon \}\) for some small ε > 0. Projecting onto the intersection of the C i (ε) then produces an interior point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta E, Delgado C (1994) Fréchet versus Carathéodory. Am Math Mon 101:332–338

    Article  MATH  Google Scholar 

  2. Acton FS (1990) Numerical methods that work. Mathematical Association of America, Washington, DC

    MATH  Google Scholar 

  3. Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  4. Armstrong RD, Kung MT (1978) Algorithm AS 132: least absolute value estimates for a simple linear regression problem. Appl Stat 27:363–366

    Article  MATH  Google Scholar 

  5. Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: 2007 symposium on discrete algorithms (SODA). Society for Industrial and Applied Mathematics, Philadelphia, 2007

    Google Scholar 

  6. Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972) Statistical inference under order restrictions; the theory and application of isotonic regression. Wiley, New York

    MATH  Google Scholar 

  7. Bartle RG (1996) Return to the Riemann integral. Am Math Mon 103:625–632

    Article  MathSciNet  MATH  Google Scholar 

  8. Baum LE (1972) An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3:1–8

    Google Scholar 

  9. Bauschke HH, Lewis AS (2000) Dykstra’s algorithm with Bregman projections: a convergence proof. Optimization 48:409–427

    Article  MathSciNet  MATH  Google Scholar 

  10. Beltrami EJ (1970) An algorithmic approach to nonlinear analysis and optimization. Academic, New York

    MATH  Google Scholar 

  11. Berry MW, Drmac Z, Jessup ER (1999) Matrices, vector spaces, and information retrieval. SIAM Rev 41:335–362

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont

    MATH  Google Scholar 

  13. Bertsekas DP (2009) Convex optimization theory. Athena Scientific, Belmont

    MATH  Google Scholar 

  14. Bishop YMM, Feinberg SE, Holland PW (1975) Discrete multivariate analysis: theory and practice. MIT, Cambridge

    MATH  Google Scholar 

  15. Bliss GA (1925) Calculus of variations. Mathematical Society of America, Washington, DC

    MATH  Google Scholar 

  16. Böhning D, Lindsay BG (1988) Monotonicity of quadratic approximation algorithms. Ann Inst Stat Math 40:641–663

    Article  MATH  Google Scholar 

  17. Borwein JM, Lewis AS (2000) Convex analysis and nonlinear optimization: theory and examples. Springer, New York

    MATH  Google Scholar 

  18. Botsko MW, Gosser RA (1985) On the differentiability of functions of several variables. Am Math Mon 92:663–665

    Article  MathSciNet  Google Scholar 

  19. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Boyd S, Kim SJ, Vandenberghe L, Hassibi A (2007) A tutorial on geometric programming. Optim Eng 8:67–127

    Article  MathSciNet  MATH  Google Scholar 

  21. Boyle JP, Dykstra RL (1985) A method for finding projections onto the intersection of convex sets in Hilbert space. In: Advances in order restricted statistical inference. Lecture notes in statistics. Springer, New York, pp 28–47

    Google Scholar 

  22. Bradley EL (1973) The equivalence of maximum likelihood and weighted least squares estimates in the exponential family. J Am Stat Assoc 68:199–200

    MATH  Google Scholar 

  23. Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs. Biometrika 39:324–345

    MathSciNet  MATH  Google Scholar 

  24. Bregman LM (1965) The method of successive projection for finding a common point of convex sets. Sov Math Dokl 6:688–692

    MATH  Google Scholar 

  25. Bregman LM (1967) The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput Math Math Phy 7:200–217

    Article  Google Scholar 

  26. Bregman LM, Censor Y, Reich S (2000) Dykstra’s algorithm as the nonlinear extension of Bregman’s optimization method. J Convex Anal 6:319–333

    MathSciNet  Google Scholar 

  27. Brent RP (1973) Some efficient algorithms for solving systems of nonlinear equations. SIAM J Numer Anal 10:327–344

    Article  MathSciNet  MATH  Google Scholar 

  28. Brezhneva OA, Tret’yakov AA, Wright SE (2010) A simple and elementary proof of the Karush-Kuhn-Tucker theorem for inequality-constrained optimization. Optim Lett 3:7–10

    Article  MathSciNet  Google Scholar 

  29. Bridger M, Stolzenberg G (1999) Uniform calculus and the law of bounded change. Am Math Mon 106:628–635

    Article  MathSciNet  MATH  Google Scholar 

  30. Brinkhuis J, Tikhomirov V (2005) Optimization: insights and applications. Princeton University Press, Princeton

    MATH  Google Scholar 

  31. Brophy JF, Smith PW (1988) Prototyping Karmarkar’s algorithm using MATH-PROTRAN. IMSL Dir 5:2–3

    Google Scholar 

  32. Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593

    Article  MathSciNet  MATH  Google Scholar 

  33. Byrd RH, Nocedal J (1989) A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J Numer Anal 26:727–739

    Article  MathSciNet  MATH  Google Scholar 

  34. Byrne CL (2009) A first course in optimization. Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell

    Google Scholar 

  35. Cai J-F, Candés EJ, Shen Z (2008) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20:1956–1982

    Article  Google Scholar 

  36. Candés EJ, Tao T (2007) The Danzig selector: statistical estimation when p is much larger than n. Ann Stat 35:2313–2351

    Article  MATH  Google Scholar 

  37. Candés EJ, Tao T (2009) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inform Theor 56:2053–2080

    Article  Google Scholar 

  38. Candés EJ, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59:1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  39. Candés EJ, Wakin M, Boyd S (2007) Enhancing sparsity by reweighted 1 minimization. J Fourier Anal Appl 14:877–905

    Article  Google Scholar 

  40. Carathéodory C (1954) Theory of functions of a complex variable, vol 1. Chelsea, New York

    Google Scholar 

  41. Censor Y, Zenios SA (1992) Proximal minimization with D-functions. J Optim Theor Appl 73:451–464

    Article  MathSciNet  MATH  Google Scholar 

  42. Censor Y, Chen W, Combettes PL, Davidi R, Herman GT (2012) On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput Optim Appl 51:1065–1088

    Article  MathSciNet  MATH  Google Scholar 

  43. Charnes A, Frome EL, Yu PL (1976) The equivalence of generalized least squares and maximum likelihood in the exponential family. J Am Stat Assoc 71:169–171

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen J, Tan X (2009) Inference for multivariate normal mixtures. J Multivariate Anal 100:1367–1383

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20:33–61

    Article  MathSciNet  Google Scholar 

  46. Cheney W (2001) Analysis for applied mathematics. Springer, New York

    MATH  Google Scholar 

  47. Choi SC, Wette R (1969) Maximum likelihood estimation of the parameters of the gamma distribution and their bias. Technometrics 11:683–690

    Article  MATH  Google Scholar 

  48. Ciarlet PG (1989) Introduction to numerical linear algebra and optimization. Cambridge University Press, Cambridge

    Google Scholar 

  49. Claerbout J, Muir F (1973) Robust modeling with erratic data. Geophysics 38:826–844

    Article  Google Scholar 

  50. Clarke CA, Price Evans DA, McConnell RB, Sheppard PM (1959) Secretion of blood group antigens and peptic ulcers. Br Med J 1:603–607

    Article  Google Scholar 

  51. Conn AR, Gould NIM, Toint PL (1991) Convergence of quasi-Newton matrices generated by the symmetric rank one update. Math Program 50:177–195

    Article  MathSciNet  MATH  Google Scholar 

  52. Conte SD, deBoor C (1972) Elementary numerical analysis. McGraw- Hill, New York

    MATH  Google Scholar 

  53. Cox DR (1970) Analysis of binary data. Methuen, London

    MATH  Google Scholar 

  54. Danskin JM (1966) The theory of max-min, with applications. SIAM J Appl Math 14:641–664

    Article  MathSciNet  MATH  Google Scholar 

  55. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm Pure Appl Math 57:1413–1457

    Article  MathSciNet  MATH  Google Scholar 

  56. Davidon WC (1959) Variable metric methods for minimization. AEC Research and Development Report ANL–5990, Argonne National Laboratory, Argonne

    Google Scholar 

  57. Davis JA, Smith TW (2008) General social surveys, 1972–2008 [machine-readable data le]. Roper Center for Public Opinion Research, University of Connecticut, Storrs

    Google Scholar 

  58. Debreu G (1952) Definite and semidefinite quadratic forms. Econometrica 20:295–300

    Article  MathSciNet  MATH  Google Scholar 

  59. de Leeuw J (1994) Block relaxation algorithms in statistics. In: Bock HH, Lenski W, Richter MM (eds) Information systems and data analysis. Springer, New York, pp 308–325

    Chapter  Google Scholar 

  60. de Leeuw J (2006) Some majorization techniques. Preprint series, UCLA Department of Statistics.

    Google Scholar 

  61. de Leeuw J, Heiser WJ (1980) Multidimensional scaling with restrictions on the configuration. In: Krishnaiah PR (ed) Multivariate analysis, vol V. North-Holland, Amsterdam, pp 501–522

    Google Scholar 

  62. de Leeuw J, Lange K (2009) Sharp quadratic majorization in one dimension. Comput Stat Data Anal 53:2471–2484

    Article  MATH  Google Scholar 

  63. Delfour MC (2012) Introduction to optimization and semidifferential calculus. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  64. Demmel J (1997) Applied numerical linear algebra. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  65. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J Roy Stat Soc B 39:1–38

    MathSciNet  MATH  Google Scholar 

  66. Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  67. De Pierro AR (1993) On the relation between the ISRA and EM algorithm for positron emission tomography. IEEE Trans Med Imag 12:328–333

    Article  Google Scholar 

  68. DePree JD, Swartz CW (1988) Introduction to real analysis. Wiley, Hoboken

    MATH  Google Scholar 

  69. de Souza PN, Silva J-N (2001) Berkeley problems in mathematics, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  70. Deutsch F (2001) Best approximation in inner product spaces. Springer, New York

    Book  MATH  Google Scholar 

  71. Devijver PA (1985) Baum’s forward-backward algorithm revisited. Pattern Recogn Lett 3:369–373

    Article  MATH  Google Scholar 

  72. Ding C, Li T, Jordan MI (2010) Convex and semi-nonnegative matrix factorizations. IEEE Trans Pattern Anal Mach Intell 32:45–55

    Article  Google Scholar 

  73. Dobson AJ (1990) An introduction to generalized linear models. Chapman & Hall, London

    MATH  Google Scholar 

  74. Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theor 52:1289–1306

    Article  MathSciNet  Google Scholar 

  75. Donoho D, Johnstone I (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455

    Article  MathSciNet  MATH  Google Scholar 

  76. Duan J-C, Simonato J-G (1993) Multiplicity of solutions in maximum likelihood factor analysis. J Stat Comput Simul 47:37–47

    Article  Google Scholar 

  77. Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008) Efficient projections onto the l 1-ball for learning in high dimensions. In: Proceedings of the 25th international conference on machine learning (ICML 2008). ACM, New York, pp 272–279

    Google Scholar 

  78. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  79. Dykstra RL (1983) An algorithm for restricted least squares estimation. J Am Stat Assoc 78:837–842

    Article  MathSciNet  MATH  Google Scholar 

  80. Edgeworth FY (1887) On observations relating to several quantities. Hermathena 6:279–285

    Google Scholar 

  81. Edgeworth FY (1888) On a new method of reducing observations relating to several quantities. Phil Mag 25:184–191

    Article  MATH  Google Scholar 

  82. Edwards CH Jr (1973) Advanced calculus of several variables. Academic, New York

    MATH  Google Scholar 

  83. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407–499

    Article  MathSciNet  MATH  Google Scholar 

  84. Ekeland I (1974) On the variational principle. J Math Anal Appl 47:324–353

    Article  MathSciNet  MATH  Google Scholar 

  85. Elsner L, Koltracht L, Neumann M (1992) Convergence of sequential and asynchronous nonlinear paracontractions. Numer Math 62:305–319

    Article  MathSciNet  MATH  Google Scholar 

  86. Everitt BS (1977) The analysis of contingency tables. Chapman & Hall, London

    Google Scholar 

  87. Fang S-C, Puthenpura S (1993) Linear optimization and extensions: theory and algorithms. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  88. Fazel M, Hindi M, Boyd S (2003) Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. Proc Am Contr Conf 3:2156–2162

    Google Scholar 

  89. Feller W (1971) An introduction to probability theory and its applications, vol 2, 2nd edn. Wiley, Hoboken

    Google Scholar 

  90. Fessler JA, Clinthorne NH, Rogers WL (1993) On complete-data spaces for PET reconstruction algorithms. IEEE Trans Nucl Sci 40:1055–1061

    Article  Google Scholar 

  91. Fiacco AV, McCormick GP (1968) Nonlinear programming: sequential unconstrained minimization techniques. Wiley, Hoboken

    MATH  Google Scholar 

  92. Fletcher R (2000) Practical methods of optimization, 2nd edn. Wiley, Hoboken

    Google Scholar 

  93. Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. Comput J 6:163–168

    Article  MathSciNet  MATH  Google Scholar 

  94. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154

    Article  MathSciNet  MATH  Google Scholar 

  95. Flury B, Zoppè A (2000) Exercises in EM. Am Stat 54:207–209

    Google Scholar 

  96. Forsgren A, Gill PE, Wright MH (2002) Interior point methods for nonlinear optimization. SIAM Rev 44:523–597

    Article  MathSciNet  Google Scholar 

  97. Franklin J (1983) Mathematical methods of economics. Am Math Mon 90:229–244

    Article  MathSciNet  MATH  Google Scholar 

  98. Friedman J, Hastie T, Tibshirani R (2007) Pathwise coordinate optimization. Ann Appl Stat 1:302–332

    Article  MathSciNet  MATH  Google Scholar 

  99. Friedman J, Hastie T, Tibshirani R (2009) Regularized paths for generalized linear models via coordinate descent. Technical Report, Department of Statistics, Stanford University

    Google Scholar 

  100. Fu WJ (1998) Penalized regressions: the bridge versus the lasso. J Comput Graph Stat 7:397–416

    Google Scholar 

  101. Gabriel KR, Zamir S (1979) Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21:489–498

    Article  MATH  Google Scholar 

  102. Gelfand IM, Fomin SV (1963) Calculus of variations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  103. Geman S, McClure D (1985) Bayesian image analysis: an application to single photon emission tomography. In: Proceedings of the statistical computing section. American Statistical Association, Washington, DC, pp 12–18

    Google Scholar 

  104. Gifi A (1990) Nonlinear multivariate analysis. Wiley, Hoboken

    MATH  Google Scholar 

  105. Gill PE, Murray W, Wright MH (1991) Numerical linear algebra and optimization, vol 1. Addison-Wesley, Redwood City

    MATH  Google Scholar 

  106. Goldstein T, Osher S (2009) The split Bregman method for 1-regularized problems. SIAM J Imag Sci 2:323–343

    Article  MathSciNet  MATH  Google Scholar 

  107. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  108. Gordon RA (1998) The use of tagged partitions in elementary real analysis. Am Math Mon 105:107–117

    Article  MATH  Google Scholar 

  109. Gould NIM (2008) How good are projection methods for convex feasibility problems? Comput Optim Appl 40:1–12

    Article  MathSciNet  MATH  Google Scholar 

  110. Green PJ (1984) Iteratively reweighted least squares for maximum likelihood estimation and some robust and resistant alternatives (with discussion). J Roy Stat Soc B 46:149–192

    MATH  Google Scholar 

  111. Green PJ (1990) Bayesian reconstruction for emission tomography data using a modified EM algorithm. IEEE Trans Med Imag 9:84–94

    Article  Google Scholar 

  112. Green PJ (1990) On use of the EM algorithm for penalized likelihood estimation. J Roy Stat Soc B 52:443–452

    MATH  Google Scholar 

  113. Grimmett GR, Stirzaker DR (1992) Probability and random processes, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  114. Groenen PJF, Nalbantov G, Bioch JC (2007) Nonlinear support vector machines through iterative majorization and I-splines. In: Lenz HJ, Decker R (eds) Studies in classification, data analysis, and knowledge organization. Springer, Heidelberg, pp 149–161

    Google Scholar 

  115. Guillemin V, Pollack A (1974) Differential topology. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  116. Güler O (2010) Foundations of optimization. Springer, New York

    Book  MATH  Google Scholar 

  117. Hämmerlin G, Hoffmann K-H (1991) Numerical mathematics. Springer, New York

    Book  Google Scholar 

  118. Hardy GH, Littlewood JE, Pólya G (1952) Inequalities, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  119. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  120. He L, Marquina A, Osher S (2005) Blind deconvolution using TV regularization and Bregman iteration. Int J Imag Syst Technol 15, 74–83

    Article  Google Scholar 

  121. Heiser WJ (1987) Correspondence analysis with least absolute residuals. Comput Stat Data Anal 5:337–356

    Article  MATH  Google Scholar 

  122. Heiser WJ (1995) Convergent computing by iterative majorization: theory and applications in multidimensional data analysis. In: Krzanowski WJ (ed) Recent advances in descriptive multivariate analysis. Clarendon, Oxford, pp 157–189

    Google Scholar 

  123. Henrici P (1982) Essentials of numerical analysis with pocket calculator demonstrations. Wiley, Hoboken

    MATH  Google Scholar 

  124. Herman GT (1980) Image reconstruction from projections: the fundamentals of computerized tomography. Springer, New York

    MATH  Google Scholar 

  125. Hestenes MR (1981) Optimization theory: the finite dimensional case. Robert E Krieger Publishing, Huntington

    Google Scholar 

  126. Hestenes MR, Karush WE (1951) A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix. J Res Natl Bur Stand 47:471–478

    Article  MathSciNet  Google Scholar 

  127. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 29:409–439

    Article  MathSciNet  Google Scholar 

  128. Higham NJ (2008) Functions of matrices: theory and computation. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  129. Hille E (1959) Analytic function theory, vol 1. Blaisdell, New York

    MATH  Google Scholar 

  130. Hiriart-Urruty J-B (1986) When is a point x satisfying ∇ f(x) = 0 a global minimum of f(x)? Am Math Mon 93:556–558

    Article  MathSciNet  MATH  Google Scholar 

  131. Hiriart-Urruty J-B, Claude Lemaréchal C (2001) Fundamentals of convex analysis. Springer, New York

    Book  MATH  Google Scholar 

  132. Hochstadt H (1986) The functions of mathematical physics. Dover, New York

    MATH  Google Scholar 

  133. Hoel PG, Port SC, Stone CJ (1971) Introduction to probability theory. Houghton Mifflin, Boston

    MATH  Google Scholar 

  134. Hoffman K (1975) Analysis in Euclidean space. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  135. Hoffman K, Kunze R (1971) Linear algebra, 2nd edn. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  136. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  137. Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  138. Householder AS (1975) The theory of matrices in numerical analysis. Dover, New York

    MATH  Google Scholar 

  139. Hrusa W, Troutman JL (1981) Elementary characterization of classical minima. Am Math Mon 88:321–327

    Article  MathSciNet  MATH  Google Scholar 

  140. Hunter DR (2004) MM algorithms for generalized Bradley-Terry models. Ann Stat 32:386–408

    Google Scholar 

  141. Hunter DR, Lange K (2000) Quantile regression via an MM algorithm. J Comput Graph Stat 9:60–77

    MathSciNet  Google Scholar 

  142. Hunter DR, Lange K (2004) A tutorial on MM algorithms. Am Stat 58:30–37

    Article  MathSciNet  Google Scholar 

  143. Hunter DR, Li R (2005) Variable selection using MM algorithms. Ann Stat 33:1617–1642

    Article  MathSciNet  MATH  Google Scholar 

  144. Jamshidian M, Jennrich RI (1995) Acceleration of the EM algorithm by using quasi-Newton methods. J Roy Stat Soc B 59:569–587

    Article  MathSciNet  Google Scholar 

  145. Jamshidian M, Jennrich RI (1997) Quasi-Newton acceleration of the EM algorithm. J Roy Stat Soc B 59:569–587

    Article  MathSciNet  MATH  Google Scholar 

  146. Jennrich RI, Moore RH (1975) Maximum likelihood estimation by means of nonlinear least squares. In: Proceedings of the statistical computing section. American Statistical Association, Washington, DC, pp 57–65

    Google Scholar 

  147. Jia R-Q, Zhao H, Zhao W (2009) Convergence analysis of the Bregman method for the variational model of image denoising. Appl Comput Harmon Anal 27:367–379

    Article  MathSciNet  MATH  Google Scholar 

  148. Karlin S, Taylor HM (1975) A first course in stochastic processes, 2nd edn. Academic, New York

    MATH  Google Scholar 

  149. Karush W (1939) Minima of functions of several variables with inequalities as side conditions. Master’s Thesis, Department of Mathematics, University of Chicago, Chicago

    Google Scholar 

  150. Keener JP (1993) The Perron-Frobenius theorem and the ranking of football teams. SIAM Rev 35:80–93

    Article  MathSciNet  MATH  Google Scholar 

  151. Kelley CT (1999) Iterative methods for optimization. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  152. Khalfan HF, Byrd RH, Schnabel RB (1993) A theoretical and experimental study of the symmetric rank-one update. SIAM J Optim 3:1–24

    Article  MathSciNet  MATH  Google Scholar 

  153. Kiers HAL (1997) Weighted least squares fitting using ordinary least squares algorithms. Psychometrika 62:251–266

    Article  MathSciNet  MATH  Google Scholar 

  154. Kingman JFC (1993) Poisson processes. Oxford University Press, Oxford

    MATH  Google Scholar 

  155. Komiya H (1988) Elementary proof for Sion’s minimax theorem. Kodai Math J 11:5–7

    Article  MathSciNet  MATH  Google Scholar 

  156. Kosowsky JJ, Yuille AL (1994) The invisible hand algorithm: solving the assignment problem with statistical physics. Neural Network 7:477–490

    Article  MATH  Google Scholar 

  157. Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  MathSciNet  MATH  Google Scholar 

  158. Kruskal JB (1965) Analysis of factorial experiments by estimating monotone transformations of the data. J Roy Stat Soc B 27:251–263

    MathSciNet  Google Scholar 

  159. Ku HH, Kullback S (1974) Log-linear models in contingency table analysis. Biometrics 10:452–458

    Google Scholar 

  160. Kuhn S (1991) The derivative á la Carathéodory. Am Math Mon 98:40–44

    Article  MATH  Google Scholar 

  161. Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of the second Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley

    Google Scholar 

  162. Lange K (1994) An adaptive barrier method for convex programming. Meth Appl Anal 1:392–402

    MATH  Google Scholar 

  163. Lange K (1995) A gradient algorithm locally equivalent to the EM algorithm. J Roy Stat Soc B 57:425–437

    MATH  Google Scholar 

  164. Lange K (1995) A quasi-Newton acceleration of the EM algorithm. Stat Sin 5:1–18

    MATH  Google Scholar 

  165. Lange K (2002) Mathematical and statistical methods for genetic analysis, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  166. Lange K (2010) Numerical analysis for statisticians, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  167. Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8:306–316

    Google Scholar 

  168. Lange K, Fessler JA (1995) Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans Image Process 4:1430–1438

    Article  Google Scholar 

  169. Lange K, Wu T (2008) An MM algorithm for multicategory vertex discriminant analysis. J Comput Graph Stat 17:527–544

    Article  MathSciNet  Google Scholar 

  170. Lange K, Zhou H (2012) MM algorithms for geometric and signomial programming. Math Program, Series A, DOI 10.1007/s10107-012-0612-1

    Google Scholar 

  171. Lange K, Hunter D, Yang I (2000) Optimization transfer using surrogate objective functions (with discussion). J Comput Graph Stat 9:1–59

    MathSciNet  Google Scholar 

  172. Lax PD (2007) Linear algebra and its applications, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  173. Ledoita O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88:365–411

    Article  Google Scholar 

  174. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  Google Scholar 

  175. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst 13:556–562

    Google Scholar 

  176. Lehmann EL (1986) Testing statistical hypotheses, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  177. Levina E, Rothman A, Zhu J (2008) Sparse estimation of large covariance matrices via a nested lasso penalty. Ann Appl Stat 2:245–263

    Article  MathSciNet  MATH  Google Scholar 

  178. Li Y, Arce GR (2004) A maximum likelihood approach to least absolute deviation regression. EURASIP J Appl Signal Process 2004:1762–1769

    Article  MathSciNet  Google Scholar 

  179. Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, Hoboken

    MATH  Google Scholar 

  180. Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J Roy Stat Soc B 44:226–233

    MathSciNet  MATH  Google Scholar 

  181. Luce RD (1959) Individual choice behavior: a theoretical analysis. Wiley, Hoboken

    MATH  Google Scholar 

  182. Luce RD (1977) The choice axiom after twenty years. J Math Psychol 15:215–233

    Article  MathSciNet  MATH  Google Scholar 

  183. Luenberger DG (1984) Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  184. Magnus JR, Neudecker H (1988) Matrix differential calculus with applications in statistics and econometrics. Wiley, Hoboken

    MATH  Google Scholar 

  185. Maher MJ (1982) Modelling association football scores. Stat Neerl 36:109–118

    Article  Google Scholar 

  186. Mangasarian OL, Fromovitz S (1967) The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J Math Anal Appl 17:37–47

    Article  MathSciNet  MATH  Google Scholar 

  187. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, New York

    MATH  Google Scholar 

  188. Marsden JE, Hoffman MJ (1993) Elementary classical analysis, 2nd edn. W H Freeman & Co, New York

    MATH  Google Scholar 

  189. Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11:2287–2322

    MathSciNet  MATH  Google Scholar 

  190. McLachlan GJ, Do K-A, Ambroise C (2004) Analyzing microarray gene expression data. Wiley, Hoboken

    Book  MATH  Google Scholar 

  191. McLachlan GJ, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  192. McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, Hoboken

    Book  MATH  Google Scholar 

  193. McLeod RM (1980) The generalized Riemann integral. Mathematical Association of America, Washington, DC

    MATH  Google Scholar 

  194. McShane EJ (1973) The Lagrange multiplier rule. Am Math Mon 80:922–925

    Article  MathSciNet  MATH  Google Scholar 

  195. Meyer RR (1976) Sufficient conditions for the convergence of monotonic mathematical programming algorithms. J Comput Syst Sci 12:108–121

    Article  MATH  Google Scholar 

  196. Michelot C (1986) A finite algorithm for finding the projection of a point onto the canonical simplex in R n. J Optim Theor Appl 50:195–200

    Article  MathSciNet  MATH  Google Scholar 

  197. Miller KS (1987) Some eclectic matrix theory. Robert E Krieger Publishing, Malabar

    MATH  Google Scholar 

  198. Moré JJ, Sorensen DC (1983) Computing a trust region step. SIAM J Sci Stat Comput 4:553–572

    Article  MATH  Google Scholar 

  199. Narayanan A (1991) Algorithm AS 266: maximum likelihood estimation of the parameters of the Dirichlet distribution. Appl Stat 40:365–374

    Article  Google Scholar 

  200. Nazareth L (1979) A relationship between the BFGS and conjugate gradient algorithms and its implications for new algorithms. SIAM J Numer Anal 16:794–800

    Article  MathSciNet  MATH  Google Scholar 

  201. Nedelman J, Wallenuis T (1986) Bernoulli trials, Poisson trials, surprising variances, and Jensen’s inequality. Am Stat 40:286–289

    Google Scholar 

  202. Nelder JA, Wedderburn RWM (1972) Generalized linear models. J Roy Stat Soc A 135:370–384

    Article  Google Scholar 

  203. Nemirovski AS, Todd MJ (2008) Interior-point methods for optimization. Acta Numerica 17:191–234

    Article  MathSciNet  MATH  Google Scholar 

  204. Nocedal J (1991) Theory of algorithms for unconstrained optimization. Acta Numerica 1991:199–242

    MathSciNet  Google Scholar 

  205. Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  206. Orchard T, Woodbury MA (1972) A missing information principle: theory and applications. In: Proceedings of the 6th Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 697–715

    Google Scholar 

  207. Ortega JM (1990) Numerical analysis: a second course. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  208. Osher S, Burger M, Goldfarb D, Xu J, Yin W (2005) An iterative regularization method for total variation based image restoration. Multiscale Model Simul 4:460–489

    Article  MathSciNet  MATH  Google Scholar 

  209. Osher S, Mao T, Dong B, Yin W (2011) Fast linearized Bregman iteration for compressive sensing and sparse denoising. Comm Math Sci 8:93–111

    MathSciNet  Google Scholar 

  210. Park MY, Hastie T (2008) Penalized logistic regression for detecting gene interactions. Biostatistics 9:30–50

    Article  MATH  Google Scholar 

  211. Pauca VP, Piper J, Plemmons RJ (2006) Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl 416:29–47

    Article  MathSciNet  MATH  Google Scholar 

  212. Peressini AL, Sullivan FE, Uhl JJ Jr (1988) The mathematics of nonlinear programming. Springer, New York

    Book  MATH  Google Scholar 

  213. Polya G (1954) Induction and analogy in mathematics. Volume I of mathematics and plausible reasoning. Princeton University Press, Princeton

    Google Scholar 

  214. Portnoy S, Koenker R (1997) The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators. Stat Sci 12:279–300

    Article  MathSciNet  MATH  Google Scholar 

  215. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  216. Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–285

    Article  Google Scholar 

  217. Ranola JM, Ahn S, Sehl ME, Smith DJ, Lange K (2010) A Poisson model for random multigraphs. Bioinformatics 26:2004–2011

    Article  Google Scholar 

  218. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  219. Robertson T, Wright FT, Dykstra RL (1988) Order restricted statistical inference. Wiley, Hoboken

    MATH  Google Scholar 

  220. Romano G (1995) New results in subdifferential calculus with applications to convex analysis. Appl Math Optim 32:213–234

    Article  MathSciNet  MATH  Google Scholar 

  221. Rockafellar RT (1996) Convex analysis. Princeton University Press, Princeton

    Google Scholar 

  222. Royden HL (1988) Real analysis, 3rd edn. Macmillan, London

    MATH  Google Scholar 

  223. Rudin W (1979) Principles of mathematical analysis, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  224. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268

    Article  MATH  Google Scholar 

  225. Rustagi JS (1976) Variational methods in statistics. Academic, New York

    MATH  Google Scholar 

  226. Ruszczyński A (2006) Nonlinear optimization. Princeton University Press, Princeton

    MATH  Google Scholar 

  227. Sabatti C, Lange K (2002) Genomewide motif identification using a dictionary model. Proc IEEE 90:1803–1810

    Article  Google Scholar 

  228. Sagan H (1969) Introduction to the calculus of variations. McGraw-Hill, New York

    Google Scholar 

  229. Santosa F, Symes WW (1986) Linear inversion of band-limited reflection seimograms. SIAM J Sci Stat Comput 7:1307–1330

    Article  MathSciNet  MATH  Google Scholar 

  230. Schmidt M, van den Berg E, Friedlander MP, Murphy K (2009) Optimizing costly functions with simple constraints: a limited-memory projected quasi-Newton algorithm. In: van Dyk D, Welling M (eds) Proceedings of The twelfth international conference on artificial intelligence and statistics (AISTATS), vol 5, pp 456–463

    Google Scholar 

  231. Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT, Cambridge

    Google Scholar 

  232. Seber GAF, Lee AJ (2003) Linear regression analysis, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

  233. Segel LA (1977) Mathematics applied to continuum mechanics. Macmillan, New York

    MATH  Google Scholar 

  234. Seneta E (1973) Non-negative matrices: an introduction to theory and applications. Wiley, Hoboken

    MATH  Google Scholar 

  235. Sha F, Saul LK, Lee DD (2003) Multiplicative updates for nonnegative quadratic programming in support vector machines. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems 15. MIT, Cambridge, pp 1065–1073

    Google Scholar 

  236. Silvapulle MJ, Sen PK (2005) Constrained statistical inference. Wiley, Hoboken

    MATH  Google Scholar 

  237. Sinkhorn R (1967) Diagonal equivalence to matrices with prescribed row and column sums. Am Math Mon 74:402–405

    Article  MathSciNet  MATH  Google Scholar 

  238. Sion M (1958) On general minimax theorems. Pac J Math 8:171–176

    Article  MathSciNet  MATH  Google Scholar 

  239. Smith CAB (1957) Counting methods in genetical statistics. Ann Hum Genet 21:254–276

    Article  Google Scholar 

  240. Smith DR (1974) Variational methods in optimization. Dover, Mineola

    MATH  Google Scholar 

  241. Sorensen DC (1997) Minimization of a large-scale quadratic function subject to spherical constraints. SIAM J Optim 7:141–161

    Article  MathSciNet  MATH  Google Scholar 

  242. Srebro N, Jaakkola T (2003) Weighted low-rank approximations. In: Machine learning international workshop conference 2003. AAAI Press, 20:720–727

    Google Scholar 

  243. Steele JM (2004) The Cauchy-Schwarz master class: an introduction to the art of inequalities. Cambridge University Press and the Mathematical Association of America, Cambridge

    Book  Google Scholar 

  244. Stein EM, Shakarchi R (2003) Complex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  245. Stern RJ, Wolkowicz H (1995) Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J Optim 5:286–313

    Article  MathSciNet  MATH  Google Scholar 

  246. Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 3rd edn. Springer, New York

    MATH  Google Scholar 

  247. Strang G (1986) Introduction to applied mathematics. Wellesley-Cambridge, Wellesley

    MATH  Google Scholar 

  248. Strang G (1986) The fundamental theorem of linear algebra. Am Math Mon 100:848–855

    Article  MathSciNet  Google Scholar 

  249. Strang G (2003) Introduction to linear algebra, 3rd edn. Wellesley-Cambridge, Wellesley

    Google Scholar 

  250. Swartz C, Thomson BS (1988) More on the fundamental theorem of calculus. Am Math Mon 95:644–648

    Article  MathSciNet  MATH  Google Scholar 

  251. Tanner MA (1993) Tools for statistical inference: methods for the exploration of posterior distributions and likelihood functions, 2nd edn. Springer, New York

    MATH  Google Scholar 

  252. Taylor H, Banks SC, McCoy JF (1979) Deconvolution with the 1 norm. Geophysics 44:39–52

    Article  Google Scholar 

  253. Teboulle M (1992) Entropic proximal mappings with applications to nonlinear programming. Math Oper Res 17:670–690

    Article  MathSciNet  MATH  Google Scholar 

  254. Theobald CM (1975) An inequality for the trace of the product of two symmetric matrices. Math Proc Camb Phil Soc 77:265–267

    Article  MathSciNet  MATH  Google Scholar 

  255. Thompson HB (1989) Taylor’s theorem using the generalized Riemann integral. Am Math Mon 96:346–350

    Article  MATH  Google Scholar 

  256. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  257. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused lasso. J Roy Stat Soc B 67:91–108

    Article  MathSciNet  MATH  Google Scholar 

  258. Tikhomirov VM (1990) Stories about maxima and minima. American Mathematical Society, Providence

    MATH  Google Scholar 

  259. Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley, Hoboken

    MATH  Google Scholar 

  260. Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  261. Uherka DJ, Sergott AM (1977) On the continuous dependence of the roots of a polynomial on its coefficients. Am Math Mon 84:368–370

    Article  MathSciNet  MATH  Google Scholar 

  262. Vandenberghe L, Boyd S, Wu S (1998) Determinant maximization with linear matrix inequality constraints. SIAM J Matrix Anal Appl 19:499–533

    Article  MathSciNet  MATH  Google Scholar 

  263. Van Ruitenburg J (2005) Algorithms for parameter estimation in the Rasch model. Measurement and Research Department Reports 2005–4. CITO, Arnhem

    Google Scholar 

  264. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  265. Vardi Y, Shepp LA, Kaufman L (1985) A statistical model for positron emission tomography. J Am Stat Assoc 80:8–37

    Article  MathSciNet  MATH  Google Scholar 

  266. Von Neumann J (1928) Zur theorie der gesellschaftsspiele. Math Ann 100:295–320

    Article  MathSciNet  MATH  Google Scholar 

  267. Wang L, Gordon MD, Zhu J (2006) Regularized least absolute deviations regression and an efficient algorithm for parameter tuning. In: Proceedings of the sixth international conference on data mining (ICDM’06). IEEE Computer Society, Washington, DC, pp 690–700

    Google Scholar 

  268. Wang S, Yehya N, Schadt EE, Wang H, Drake TA, Lusis AJ (2006) Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2:148–159

    Article  Google Scholar 

  269. Watson GA (1992) Characterization of the subdifferential of some matrix norms. Linear Algebra Appl 170:1039–1053

    Article  Google Scholar 

  270. Weeks DE, Lange K (1989) Trials, tribulations, and triumphs of the EM algorithm in pedigree analysis. IMA J Math Appl Med Biol 6:209–232

    Article  MathSciNet  MATH  Google Scholar 

  271. Weiszfeld E (1937) On the point for which the sum of the distances to n given points is minimum. Ann Oper Res 167:741 (Translated from the French original [Tohoku Math J 43:335–386 (1937)] and annotated by Frank Plastria)

    Google Scholar 

  272. Weston J, Elisseeff A, Schölkopf B, Tipping M (2003) Use of the zero-norm with linear models and kernel methods. J Mach Learn Res 3:1439–1461

    MATH  Google Scholar 

  273. Whyte BM, Gold J, Dobson AJ, Cooper DA (1987) Epidemiology of acquired immunodeficiency syndrome in Australia. Med J Aust 147:65–69

    Google Scholar 

  274. Wright MH (2005) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42:39–56

    Article  MATH  Google Scholar 

  275. Wu CF (1983) On the convergence properties of the EM algorithm. Ann Stat 11:95–103

    Article  MATH  Google Scholar 

  276. Wu TT, Lange K (2008) Coordinate descent algorithms for lasso penalized regression. Ann Appl Stat 2:224–244

    Article  MathSciNet  MATH  Google Scholar 

  277. Wu TT, Lange K (2010) Multicategory vertex discriminant analysis for high-dimensional data. Ann Appl Stat 4:1698–1721

    Article  MathSciNet  MATH  Google Scholar 

  278. Yee PL, Vyb́orný R (2000) The integral: an easy approach after Kurzweil and Henstock. Cambridge University Press, Cambridge

    Google Scholar 

  279. Yin W, Osher S, Goldfarb D, Darbon J (2008) Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM J Imag Sci 1:143–168

    Article  MathSciNet  MATH  Google Scholar 

  280. Zhang Z, Lange K, Ophoff R, Sabatti C (2010) Reconstructing DNA copy number by penalized estimation and imputation. Ann Appl Stat 4:1749–1773

    Article  MathSciNet  MATH  Google Scholar 

  281. Zhou H, Lange K (2009) On the bumpy road to the dominant mode. Scand J Stat 37:612–631

    Article  MathSciNet  Google Scholar 

  282. Zhou H, Lange K (2010) MM algorithms for some discrete multivariate distributions. J Comput Graph Stat 19:645–665

    Article  MathSciNet  Google Scholar 

  283. Zhou H, Lange K (2012) A path algorithm for constrained estimation. J Comput Graph Stat DOI 10.1080/10618600.2012.681248

    Google Scholar 

  284. Zhou H, Lange K (2012) Path following in the exact penalty method of convex programming (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lange, K. (2013). Feasibility and Duality. In: Optimization. Springer Texts in Statistics, vol 95. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5838-8_15

Download citation

Publish with us

Policies and ethics