Nanotoxicology in Green Nanoscience



Nanotechnology holds great promise for future economical and technological advances, yet health and safety concerns regarding nanomaterials persist. As an emerging technology, nanotechnology is in the unique position to proactively address health and safety concerns throughout the product life cycle. Green chemistry aims to create benign compounds in a way that prevents pollution and reduces waste throughout every stage of production. Through green nanoscience, the principles of green chemistry can be applied toward making high performance, yet inherently safe nanomaterials. Successful application of green chemistry principles to assess nanomaterial health and safety requires efficient, predictive, high-throughput nanotoxicity testing. With these approaches, designers and manufacturers of nanomaterials can assess nanotoxicity early in production to redesign or replace hazardous nanomaterials.


Instrumental Neutron Activation Analysis Green Chemistry Zebrafish Embryo Aryl Hydrocarbon Receptor Zinc Finger Nuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Embryonic development

The molecular signaling, cell divisions, cell rearrangements, and cell differentiation that lead to tissues, organs, and structures of an organism.

High throughput

A method of stream-lining, often through automation, testing procedures to rapidly conduct thousands of experiments.


As defined by the National Nanotechnology Initiative, “nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100nm, where unique phenomena enable novel applications.”

Structure activity relationships (SARS)

A method of relating how structural and physiochemical properties of a compound influence biological activity.

Tiered approach

An approach that optimizes identification of potentially hazardous compounds through testing and systematic interpretation of results [1].

Toxicology testing

Testing to examine and understand the adverse effects of physical, biological, or chemical compounds on organisms and the environment with the objective of mitigation or prevention [2].


  1. 1.
    Hushon J, Clerman R, Wagner B (1979) Tiered testing for chemical hazard assessment. Environ Sci Technol 13:1202–1207CrossRefGoogle Scholar
  2. 2.
    Society of Toxicology (2005) How do you define toxicology? Soc Toxicol Commun.
  3. 3.
    NSET/NEHI (2011) NNI environmental, health, and safety research strategy fact sheet.
  4. 4.
    Forrest DR (2001) Molecular nanotechnology. IEEE Instrum Meas Mag 4(3):11–20CrossRefGoogle Scholar
  5. 5.
    Lecoanet H, Wiesner MR (2004) Assessment of the mobility of nanomaterials in groundwater acouifers. Abs Pap Am Chem Soc 227:U1275–U1275Google Scholar
  6. 6.
    Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169CrossRefGoogle Scholar
  7. 7.
    Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382CrossRefGoogle Scholar
  8. 8.
    Okamoto Y (2001) Ab initio investigation of hydrogenation of C-60. J Phys Chem A 105:7634–7637CrossRefGoogle Scholar
  9. 9.
    Sun O, Wang Q, Jena P, Kawazoe Y (2005) Clustering of Ti on a C-60 surface and its effect on hydrogen storage. J Am Chem Soc 127:14582–14583CrossRefGoogle Scholar
  10. 10.
    Lux Research (2009) The recession’s ripple effect on nanotech. Lux Research Inc., New YorkGoogle Scholar
  11. 11.
    Dahl J, Maddux BLS, Hutchison JE (2007) Green nanosynthesis. Chem Rev 107:2228–2269CrossRefGoogle Scholar
  12. 12.
    Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402CrossRefGoogle Scholar
  13. 13.
    Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321CrossRefGoogle Scholar
  14. 14.
    NRC (2000) Scientific Frontiers in developmental toxicology and risk assessment. National Academy Press, Washington, DC, pp 1–327Google Scholar
  15. 15.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford/New York, xi, 135 pGoogle Scholar
  16. 16.
    McKenzie LC, Hutchinson J (2004) Green nanoscience: an integrated approach to greener products, processes and applications. Chem Today 22:30–33Google Scholar
  17. 17.
    Abbott BD, Perdew GH, Buckalew AR, Birnbaum LS (1994) Interactive regulation of Ah and glucocorticoid receptors in the synergistic induction of cleft palate by 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone. Toxicol Appl Pharmacol 128:138–150CrossRefGoogle Scholar
  18. 18.
    Podgórski A, Balazy A, Gradon L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61:6804–6815CrossRefGoogle Scholar
  19. 19.
    Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342CrossRefGoogle Scholar
  20. 20.
    Yuan J, Liu X, Akbulut O, Hu J, Suib SL et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nano 3:332–336CrossRefGoogle Scholar
  21. 21.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312CrossRefGoogle Scholar
  22. 22.
    Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19:735–744CrossRefGoogle Scholar
  23. 23.
    Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8CrossRefGoogle Scholar
  24. 24.
    Detrich HW, Westerfield M, Zon LI (eds) (1999) The zebrafish biology. Academic, San Diego, 391 pGoogle Scholar
  25. 25.
    Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279CrossRefGoogle Scholar
  26. 26.
    van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457CrossRefGoogle Scholar
  27. 27.
    Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379CrossRefGoogle Scholar
  28. 28.
    Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA et al (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330Google Scholar
  29. 29.
    de Jong JL, Zon LI (2005) Use of the zebrafish to study primitive and definitive hematopoiesis. Annu Rev Genet 39:481–501CrossRefGoogle Scholar
  30. 30.
    Gerhard GS (2003) Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Exp Gerontol 38:1333–1341CrossRefGoogle Scholar
  31. 31.
    Keller ET, Murtha JM (2004) The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comp Biochem Physiol C Toxicol Pharmacol 138:335–341CrossRefGoogle Scholar
  32. 32.
    Spitsbergen J, Kent M (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol 31:62–87Google Scholar
  33. 33.
    Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1:229–231CrossRefGoogle Scholar
  34. 34.
    Moore JL, Gestl EE, Cheng KC (2004) Mosaic eyes, genomic instability mutants, and cancer susceptibility. Methods Cell Biol 76:555–568CrossRefGoogle Scholar
  35. 35.
    Chen JN, Fishman MC (2000) Genetic dissection of heart development. Ernst Schering Res Found Workshop 29:107–122Google Scholar
  36. 36.
    Beis D, Bartman T, Jin SW, Scott IC, D’Amico LA et al (2005) Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132:4193–4204CrossRefGoogle Scholar
  37. 37.
    Drummond IA (2004) Zebrafish kidney development. Methods Cell Biol 76:501–530CrossRefGoogle Scholar
  38. 38.
    Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I et al (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288:F923–F929CrossRefGoogle Scholar
  39. 39.
    Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304CrossRefGoogle Scholar
  40. 40.
    Bahadori R, Huber M, Rinner O, Seeliger MW, Geiger-Rudolph S et al (2003) Retinal function and morphology in two zebrafish models of oculo-renal syndromes. Eur J Neurosci 18:1377–1386CrossRefGoogle Scholar
  41. 41.
    McMahon C, Semina EV, Link BA (2004) Using zebrafish to study the complex genetics of glaucoma. Comp Biochem Physiol C Toxicol Pharmacol 138:343–350CrossRefGoogle Scholar
  42. 42.
    Whitfield TT (2002) Zebrafish as a model for hearing and deafness. J Neurobiol 53:157–171CrossRefGoogle Scholar
  43. 43.
    Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22CrossRefGoogle Scholar
  44. 44.
    Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98:11691–11696CrossRefGoogle Scholar
  45. 45.
    Svoboda KR, Vijayaraghavan S, Tanguay RL (2002) Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J Neurosci 22:10731–10741Google Scholar
  46. 46.
    Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782CrossRefGoogle Scholar
  47. 47.
    Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226:202–210CrossRefGoogle Scholar
  48. 48.
    Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201CrossRefGoogle Scholar
  49. 49.
    Andreasen EA, Mathew LK, Tanguay RL (2006) Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation. Toxicol Sci 92:254–269CrossRefGoogle Scholar
  50. 50.
    Vogel G (2000) Genomics. Sanger will sequence zebrafish genome. Science 290:1671CrossRefGoogle Scholar
  51. 51.
    Zon LI (1999) Zebrafish: a new model for human disease. Genome Res 9:99–100Google Scholar
  52. 52.
    Ackermann GE, Paw BH (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8:d1227–d1253CrossRefGoogle Scholar
  53. 53.
    Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6:218–223Google Scholar
  54. 54.
    Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225–231CrossRefGoogle Scholar
  55. 55.
    Dodd A, Curtis PM, Williams LC, Love DR (2000) Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9:2443–2449CrossRefGoogle Scholar
  56. 56.
    Hahn M (2002) Aryl hydrocarbon receptors: diversity and evolution(1). Chem Biol Interact 141:131CrossRefGoogle Scholar
  57. 57.
    Tanguay RL, Andreasen EA, Walker MK, Peterson RE (2003) Dioxin toxicity and aryl hydrocarbon receptor signaling in fish. In: Schecter A (ed) Dioxins and health. Plenum Press, New York, pp 603–628Google Scholar
  58. 58.
    Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE et al (2006) AHR activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70:549–561CrossRefGoogle Scholar
  59. 59.
    Muller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21CrossRefGoogle Scholar
  60. 60.
    Ryffel B (1997) Impact of knockout mice in toxicology. Crit Rev Toxicol 27:135–154CrossRefGoogle Scholar
  61. 61.
    Rudolph U, Mohler H (1999) Genetically modified animals in pharmacological research: future trends. Eur J Pharmacol 375:327–337CrossRefGoogle Scholar
  62. 62.
    Gonzalez FJ (2002) Transgenic models in xenobiotic metabolism and toxicology. Toxicology 181–182:237–239CrossRefGoogle Scholar
  63. 63.
    Fan L, Collodi P (2002) Progress towards cell-mediated gene transfer in zebrafish. Brief Funct Genomic Proteomic 1:131–138CrossRefGoogle Scholar
  64. 64.
    Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195CrossRefGoogle Scholar
  65. 65.
    Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220CrossRefGoogle Scholar
  66. 66.
    Nasevicius A, Ekker SC (2001) The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr Opin Mol Ther 3:224–228Google Scholar
  67. 67.
    Nasevicius A, Larson J, Ekker SC (2000) Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17:294–301CrossRefGoogle Scholar
  68. 68.
    Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156CrossRefGoogle Scholar
  69. 69.
    Yan YL, Miller CT, Nissen RM, Singer A, Liu D et al (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development 129:5065–5079Google Scholar
  70. 70.
    Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y et al (2003) Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 130:5755–5768CrossRefGoogle Scholar
  71. 71.
    Imamura S, Kishi S (2005) Molecular cloning and functional characterization of zebrafish ATM. Int J Biochem Cell Biol 37:1105–1116CrossRefGoogle Scholar
  72. 72.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36Google Scholar
  73. 73.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46Google Scholar
  74. 74.
    Abdelilah S, Solnica-Krezel L, Stainier DY, Driever W (1994) Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature 370:468–471CrossRefGoogle Scholar
  75. 75.
    Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM et al (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292Google Scholar
  76. 76.
    Talbot WS, Schier AF (1999) Positional cloning of mutated zebrafish genes. Methods Cell Biol 60:259–286CrossRefGoogle Scholar
  77. 77.
    Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC et al (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20:244–250CrossRefGoogle Scholar
  78. 78.
    Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636CrossRefGoogle Scholar
  79. 79.
    Amsterdam A, Burgess S, Golling G, Chen W, Sun Z et al (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724CrossRefGoogle Scholar
  80. 80.
    Chen W, Burgess S, Golling G, Amsterdam A, Hopkins N (2002) High-throughput selection of retrovirus producer cell lines leads to markedly improved efficiency of germ line-transmissible insertions in zebra fish. J Virol 76:2192–2198CrossRefGoogle Scholar
  81. 81.
    Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E et al (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31:135–140CrossRefGoogle Scholar
  82. 82.
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701CrossRefGoogle Scholar
  83. 83.
    Meng A, Tang H, Yuan B, Ong BA, Long Q et al (1999) Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood 93:500–508Google Scholar
  84. 84.
    Torgersen J, Collas P, Alestrom P (2000) Gene-gun-mediated transfer of reporter genes to somatic zebrafish (Danio rerio) tissues. Mar Biotechnol (NY) 2:293–300Google Scholar
  85. 85.
    Powers DA, Hereford L, Cole T, Chen TT, Lin CM et al (1992) Electroporation: a method for transferring genes into the gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1:301–308Google Scholar
  86. 86.
    Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z et al (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960Google Scholar
  87. 87.
    Huang CJ, Jou TS, Ho YL, Lee WH, Jeng YT et al (2005) Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev Dyn 233:1294–1303CrossRefGoogle Scholar
  88. 88.
    Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L (1999) Transgene expression in zebrafish: a comparison of retroviral-vector and DNA-injection approaches. Dev Biol 213:207–216CrossRefGoogle Scholar
  89. 89.
    Linney E, Udvadia AJ (2004) Construction and detection of fluorescent, germline transgenic zebrafish. Methods Mol Biol 254:271–288Google Scholar
  90. 90.
    Bogers R, Mutsaerds E, Druke J, De Roode DF, Murk AJ et al (2006) Estrogenic endpoints in fish early life-stage tests: luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish. Environ Toxicol Chem 25:241–247CrossRefGoogle Scholar
  91. 91.
    Ashworth R, Brennan C (2005) Use of transgenic zebrafish reporter lines to study calcium signalling in development. Brief Funct Genomic Proteomic 4:186–193CrossRefGoogle Scholar
  92. 92.
    Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90:3986–3997CrossRefGoogle Scholar
  93. 93.
    Mattingly CJ, McLachlan JA, Toscano WA Jr (2001) Green fluorescent protein (GFP) as a marker of aryl hydrocarbon receptor (AhR) function in developing zebrafish (Danio rerio). Environ Health Perspect 109:845–849CrossRefGoogle Scholar
  94. 94.
    Higashijima S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20:206–218Google Scholar
  95. 95.
    Hill A, Howard CV, Strahle U, Cossins A (2003) Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol Sci 76:392–399CrossRefGoogle Scholar
  96. 96.
    Blechinger SR, Warren JT Jr, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110:1041–1046CrossRefGoogle Scholar
  97. 97.
    Amanuma K, Takeda H, Amanuma H, Aoki Y (2000) Transgenic zebrafish for detecting mutations caused by compounds in aquatic environments. Nat Biotechnol 18:62–65CrossRefGoogle Scholar
  98. 98.
    Scalzo FM, Levin ED (2004) The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicol Teratol 26:707–708CrossRefGoogle Scholar
  99. 99.
    Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y et al (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503CrossRefGoogle Scholar
  100. 100.
    Gerlai R (2003) Zebra fish: an uncharted behavior genetic model. Behav Genet 33:461–468CrossRefGoogle Scholar
  101. 101.
    Carvan MJ 3rd, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26:757–768CrossRefGoogle Scholar
  102. 102.
    Giacomini NJ, Rose B, Kobayashi K, Guo S (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28:245–250CrossRefGoogle Scholar
  103. 103.
    Levin ED, Swain HA, Donerly S, Linney E (2004) Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol 26:719–723CrossRefGoogle Scholar
  104. 104.
    Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864CrossRefGoogle Scholar
  105. 105.
    Samson JC, Goodridge R, Olobatuyi F, Weis JS (2001) Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg). Aquat Toxicol 51:369–376CrossRefGoogle Scholar
  106. 106.
    Kokel D, Bryan J, Laggner C, White R, Cheung CY et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237CrossRefGoogle Scholar
  107. 107.
    Corredor-Adamez M, Welten MC, Spaink HP, Jeffery JE, Schoon RT et al (2005) Genomic annotation and transcriptome analysis of the zebrafish (Danio rerio) hox complex with description of a novel member, hox b 13a. Evol Dev 7:362–375CrossRefGoogle Scholar
  108. 108.
    Lo J, Lee S, Xu M, Liu F, Ruan H et al (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466CrossRefGoogle Scholar
  109. 109.
    Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 138:351–362CrossRefGoogle Scholar
  110. 110.
    van der Ven K, De Wit M, Keil D, Moens L, Van Leemput K et al (2005) Development and application of a brain-specific cDNA microarray for effect evaluation of neuro-active pharmaceuticals in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 141:408–417CrossRefGoogle Scholar
  111. 111.
    Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR et al (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:260–276CrossRefGoogle Scholar
  112. 112.
    Clark MD, Hennig S, Herwig R, Clifton SW, Marra MA et al (2001) An oligonucleotide fingerprint normalized and expressed sequence tag characterized zebrafish cDNA library. Genome Res 11:1594–1602CrossRefGoogle Scholar
  113. 113.
    Handley-Goldstone HM, Grow MW, Stegeman JJ (2005) Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol Sci 85:683–693CrossRefGoogle Scholar
  114. 114.
    Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106Google Scholar
  115. 115.
    Hoyt PR, Doktycz MJ, Beattie KL, Greeley MS Jr (2003) DNA microarrays detect 4-nonylphenol-induced alterations in gene expression during zebrafish early development. Ecotoxicology 12:469–474CrossRefGoogle Scholar
  116. 116.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefGoogle Scholar
  117. 117.
    Mandrell D, Moore A, Jephson C, Sarker M, Lang C et al (2011) Automated zebrafish chorion removal and single embryo transfer: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom (submitted)Google Scholar
  118. 118.
    Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2:e862CrossRefGoogle Scholar
  119. 119.
    Carpenter AE (2007) Image-based chemical screening. Nat Chem Biol 3:461–465CrossRefGoogle Scholar
  120. 120.
    Mayr LM, Fuerst P (2008) The future of high-throughput screening. J Biomol Screen 13:443–448CrossRefGoogle Scholar
  121. 121.
    Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358CrossRefGoogle Scholar
  122. 122.
    Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I et al (2008) Zebrafish based assays for the assessment of cardiac, visual and gut function–potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58:59–68CrossRefGoogle Scholar
  123. 123.
    Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments†. J Phys Chem C 112:18303–18313Google Scholar
  124. 124.
    MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD et al (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58CrossRefGoogle Scholar
  125. 125.
    Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898CrossRefGoogle Scholar
  126. 126.
    Harper SL, Dahl JL, Maddux BLS, Tanguay RL, Hutchison JE (2008) Proactively designing nanomaterials to enhance performance and minimize hazard. I J Nanotechnol 5:124–142CrossRefGoogle Scholar
  127. 127.
    Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39CrossRefGoogle Scholar
  128. 128.
    Harper SL, Usenko C, Hutchinson JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure. J Exp Nanosci 3:195–206CrossRefGoogle Scholar
  129. 129.
    Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125CrossRefGoogle Scholar
  130. 130.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  131. 131.
    Colvin V (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRefGoogle Scholar
  132. 132.
    Jiang W, KimBetty YS, Rutka JT, ChanWarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nano 3:145–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Environmental and Molecular Toxicology Environmental Health Sciences CenterOregon State UniversityCorvallisUSA

Personalised recommendations