Skip to main content

Supercritical Carbon Dioxide (CO2) as Green Solvent

  • Chapter
  • First Online:
Innovations in Green Chemistry and Green Engineering

Abstract

A substance is called as a supercritical fluid (SCF) when the temperature and pressure are higher than its critical values.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chemical structure of carbon dioxide:

Carbon dioxide (CO2) has a structure O=C=O.

Green solvent:

A green solvent should have some basic properties, such as low toxic, chemically stable, readily available, and easily recyclable.

Ionic liquids:

Ionic liquids are salts that are liquid at ambient conditions.

Microemulsion:

A microemulsion is a thermodynamically stable dispersion formed from immiscible substances with the aid of surfactants.

Supercritical fluid:

A substance is called as a supercritical fluid (SCF) when the temperature and pressure are higher than its critical values.

Bibliography

Primary Literature

  1. Hannay JB, Hogarth J (1879) On the solubility of solids in gases. Proc R Soc Lond 29:324–326

    Article  Google Scholar 

  2. Poliakoff M, Licence P (2007) Sustainable technology: green chemistry. Nature 450:810–812

    Article  CAS  Google Scholar 

  3. Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318

    Article  CAS  Google Scholar 

  4. Zosel K (1978) Separation with supercritical gases: practical applications. Angew Chem Int Ed 17:702–709

    Article  Google Scholar 

  5. Daoud IS, Kusinski S (1993) Liquid CO2 and ethanol extraction of hops. 3. Effect of hop deterioration on utilization and beer quality. J Inst Brew 99:147–152

    CAS  Google Scholar 

  6. Montanari L, Fantozzi P, Snyder JM, King JW (1999) Selective extraction of phospholipids from soybeans with supercritical carbon dioxide and ethanol. J Supercrit Fluids 14:87–93

    Article  CAS  Google Scholar 

  7. Zuo YB, Zeng AW, Yuan XG, Yu KT (2008) Extraction of soybean isoflavones from soybean meal with aqueous methanol modified supercritical carbon dioxide. J Food Eng 89:384–389

    Article  CAS  Google Scholar 

  8. Hawthorne SB, Krieger MS, Miller DJ (1988) Analysis of flavor and fragrance compounds using supercritical fluid extraction coupled with gas chromatography. Anal Chem 60:472–477

    Article  CAS  Google Scholar 

  9. Abbasi H, Rezaei K, Rashidi L (2008) Extraction of essential oils from the seeds of pomegranate using organic solvents and supercritical CO2. J Am Oil Chem Soc 85:83–89

    Article  CAS  Google Scholar 

  10. Araus K, Uquiche E, del Valle JM (2009) Matrix effects in supercritical CO2 extraction of essential oils from plant material. J Food Eng 92:438–447

    Article  CAS  Google Scholar 

  11. Mezzomo N, Martinez J, Ferreira SRS (2009) Supercritical fluid extraction of peach (Prunus persica) almond oil: kinetics, mathematical modeling and scale-up. J Supercrit Fluids 51:10–16

    Article  CAS  Google Scholar 

  12. Nelson SR, Roodman RG (1985) Rose-the energy-efficient bottom of the barrel alternative. Chem Eng Prog 81:63–68

    CAS  Google Scholar 

  13. Deo MD, Hwang J, Hanson FV (1992) Supercritical fluid extraction of a crude oil, bitumen-derived liquid and bitumen by carbon dioxide and propane. Fuel 71:1519–1526

    Article  CAS  Google Scholar 

  14. Low GKC, Duffy GJ (1995) Supercritical fluid extraction of petroleum hydrocarbons from contaminated soils. Trends Anal Chem 14:218–225

    CAS  Google Scholar 

  15. Bartle KD, Clifford AA, Shilstone GF (1989) Prediction of solubilities for tar extraction by supercritical carbon dioxide. J Supercrit Fluids 2:30–34

    Article  CAS  Google Scholar 

  16. Bristow S, Shekunov BY, York P (2001) Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems. Ind Eng Chem Res 40:1732–1739

    Article  CAS  Google Scholar 

  17. Lin YH, Smart NG, Wai CM (1995) Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents. Environ Sci Technol 29:2706–2708

    Article  CAS  Google Scholar 

  18. Rincon J, De Lucas A, Garcia MA, Garcia A, Alvarez A, Carnicer A (1998) Preliminary study on the supercritical carbon dioxide extraction of nicotine from tobacco wastes. Sep Sci Technol 33:411–423

    Article  CAS  Google Scholar 

  19. Chen WH, Chen CH, Chang CMJ, Chiu YH, Hsiang D (2009) Supercritical carbon dioxide extraction of triglycerides from Jatropha curcas L. seeds. J Supercrit Fluids 51:174–180

    Article  CAS  Google Scholar 

  20. Hitzler MG, Poliakoff M (1997) Continuous hydrogenation of organic compounds in supercritical fluids. Chem Commun 1667–1668

    Article  Google Scholar 

  21. Baiker A (1999) Supercritical fluids in heterogeneous catalysis. Chem Rev 99:453–474

    Article  CAS  Google Scholar 

  22. Jiang YJ, Gao QM (2006) Heterogeneous hydrogenation catalyses over recyclable Pd(0) nanoparticle catalysts stabilized by PAMAM-SBA-15 organic−inorganic hybrid composites. J Am Chem Soc 128:716–717

    Article  CAS  Google Scholar 

  23. Wu TB, Jiang T, Hu BJ, Han BX, He JL, Zhou XS (2009) Cross-linked polymer coated Pd nanocatalysts on SiO2 support: very selective and stable catalysts for hydrogenation in supercritical CO2. Green Chem 11:798–803

    Article  CAS  Google Scholar 

  24. Chatterjee M, Zhao FY, Ikushima Y (2004) Hydrogenation of citral using monometallic Pt and bimetallic Pt-Ru catalysts on a mesoporous support in supercritical carbon dioxide medium. Adv Synth Catal 346:459–466

    Article  CAS  Google Scholar 

  25. Meric P, Yu KMK, Kong ATS, Tsang SC (2006) Pressure-dependent product distribution of citral hydrogenation over micelle-hosted Pd and Ru nanoparticles in supercritical carbon dioxide. J Catal 237:330–336

    Article  CAS  Google Scholar 

  26. Zhao FY, Zhang R, Chatterjee M, Ikushima Y, Arai M (2004) Hydrogenation of nitrobenzene with supported transition metal catalysts in supercritical carbon dioxide. Adv Synth Catal 346:661–668

    Article  CAS  Google Scholar 

  27. Zhao FY, Fujitaa S, Sun JM, Ikushima Y, Arai M (2004) Hydrogenation of nitro compounds with supported platinum catalyst in supercritical carbon dioxide. Catal Today 98:523–528

    Article  CAS  Google Scholar 

  28. Liu HZ, Jiang T, Han BX, Liang SG, Zhou YX (2009) Selective phenol hydrogenation to cyclohexanone over a dualsupported Pd-Lewis acid catalyst. Science 326:1250–1252

    Article  CAS  Google Scholar 

  29. Burk MJ, Feng S, Gross MF, Tumas W (1995) Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J Am Chem Soc 117:8277–8278

    Article  CAS  Google Scholar 

  30. Wang SN, Kienzle F (2000) The syntheses of pharmaceutical intermediates in supercritical fluids. Ind Eng Chem Res 39:4487–4490

    Article  CAS  Google Scholar 

  31. Kainz S, Brinkmann A, Leitner W, Pfaltz A (1999) Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide. J Am Chem Soc 121:6421–6429

    Article  CAS  Google Scholar 

  32. Stephenson P, Licence P, Ross SK, Poliakoff M (2004) Continuous catalytic asymmetric hydrogenation in supercritical CO2. Green Chem 6:521–523

    Article  CAS  Google Scholar 

  33. Pr C, Poliakoff M, Wells A (2007) Continuous flow hydrogenation of a pharmaceutical intermediate, [4-(3, 4-Dichlorophenyl)-3, 4-dihydro-2H-naphthalenyidene]methylamine, in supercritical carbon dioxide. Adv Synth Catal 349:2655–2659

    Article  CAS  Google Scholar 

  34. Licence P, Ke J, Sokolova M, Ross SK, Poliakoff M (2003) Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plant. Green Chem 5:99–104

    Article  CAS  Google Scholar 

  35. Hou ZS, Han BX, Gao L, Liu ZM, Yang GY (2002) Selective oxidation of cyclohexane in compressed CO2 and in liquid solvents over MnAPO-5 molecular sieve. Green Chem 4:426–430

    Article  CAS  Google Scholar 

  36. Zhang RZ, Qin ZF, Dong M, Wang GF, Wang JG (2005) Selective oxidation of cyclohexane in supercritical carbon dioxide over CoAPO-5 molecular sieves. Catal Today 110:351–356

    Article  CAS  Google Scholar 

  37. Theyssen N, Leitner W (2002) Selective oxidation of cyclooctane to cyclootanone with molecular oxygen in the presence of compressed carbon dioxide. Chem Commun 410–411. doi: 10.1039/B111212K

    Google Scholar 

  38. Theyssen N, Hou ZS, Leitner W (2006) Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction Medium. Chem Eur J 12:3401–3409

    Article  CAS  Google Scholar 

  39. Jiang HF, Jia LQ, Li JH (2000) Wacker reaction in supercritical carbon dioxide. Green Chem 2:161–164

    Article  CAS  Google Scholar 

  40. Wang ZY, Jiang HF, Qi CR, Wang YG, Dong YS, Liu HL (2005) PS-BQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide. Green Chem 7:582–585

    Article  CAS  Google Scholar 

  41. Wang XG, Venkataramanan NS, Kawanami H, Ikushima Y (2007) Selective oxidation of styrene to acetophenone over supported Au-Pd catalyst with hydrogen peroxide in supercritical carbon dioxide. Green Chem 9:1352–1355

    Article  CAS  Google Scholar 

  42. Wang JQ, Cai F, Wang E, He LN (2007) Supercritical carbon dioxide and poly(ethylene glycol): an environmentally benign biphasic solvent system for aerobic oxidation of styrene. Green Chem 9:882–887

    Article  CAS  Google Scholar 

  43. Jia LQ, Jiang HF, Li JH (1999) Palladium(II)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem Commun 985–986. doi: 10.1039/A901935I

    Google Scholar 

  44. Xie Y, Zhang ZF, Hu SQ, Song JL, Li WJ, Han BX (2008) Aerobic oxidation of benzyl alcohol in supercritical CO2 catalyzed by perruthenate immobilized on polymer supported ionic liquid. Green Chem 10:278–282

    Article  CAS  Google Scholar 

  45. Hou ZS, Theyssen N, Brinkmann A, Leitner W (2005) Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew Chem Int Ed 44:1346–1349

    Article  CAS  Google Scholar 

  46. He JL, Wu TB, Jiang T, Zhou XS, Hu BJ, Han BX (2008) Aerobic oxidation of secondary alcohols to ketones catalyzed by cobalt(II)/ZnO in poly(ethylene glycol)/CO2 system. Catal Commun 9:2239–2243

    Article  CAS  Google Scholar 

  47. Chapman AO, Akien GR, Arrowsmith NJ, Licence P, Poliakoff M (2010) Continuous heterogeneous catalytic oxidation of primary and secondary alcohols in scCO2. Green Chem 12:310–315

    Article  CAS  Google Scholar 

  48. Bourne RA, Han X, Poliakoff M, George MW (2009) Cleaner continuous photo-oxidation using singlet oxygen in supercritical carbon dioxide. Angew Chem Int Ed 48:5322–5325

    Article  CAS  Google Scholar 

  49. Han X, Bourne RA, Poliakoff M, George MW (2009) Strategies for cleaner oxidations using photochemically generated singlet oxygen in supercritical carbon dioxide. Green Chem 11:1787–1792

    Article  CAS  Google Scholar 

  50. Clifford AA, Pople K, Gaskill WJ, Bartle KD, Rayner CM (1997) Reaction control and potential tuning in a supercritical fluid. Chem Commun 595–596. doi: 10.1039/A608066I

    Google Scholar 

  51. Qian J, Timko MT, Allen AJ, Rusell CJ, Winnik B, Buckley B, Steinfeld JI, Tester JW (2004) Solvophobic acceleration of Diels-Alder reactions in supercritical carbon dioxide. J Am Chem Soc 126:5465–5474

    Article  CAS  Google Scholar 

  52. Isaacs NS, Keating N (1992) The rates of a Diels-Alder reaction in liquid and supercritical carbon dioxide. J Chem Soc Chem Commun 876–877. doi: 10.1039/C39920000876

    Google Scholar 

  53. Matsuo J, Tsuchiya T, Odashina K, Kobayashi S (2000) Lewis acid catalysis in supercritical carbon dioxide. use of scandium tris(heptadecafluorooctanesulfonate) as a lewis acid catalyst in Diels-Alder and Aza Diels-Alder reactions. Chem Lett 29:178–179

    Article  Google Scholar 

  54. Cheng JS, Jiang HF (2004) Palladium-catalyzed regioselective cyclotrimerization of acetylenes in supercritical carbon dioxide. Eur J Org Chem 643–646. doi: 10.1002/ejoc.200300299

    Google Scholar 

  55. Li JH, Jiang HF (1999) Glaser coupling reaction in supercritical carbon dioxide. Chem Commun 2369–2370. doi: 10.1039/A908014G

    Google Scholar 

  56. Carroll MA, Holmes AB (1998) Palladium-catalysed carbon-carbon bond formation in supercritical carbon dioxide. Chem Commun 1395–1396. doi: 10.1039/A802235F

    Google Scholar 

  57. Shezad N, Clifford AA, Rayner CM (2002) Pd-catalysed coupling reactions in supercritical carbon dioxide and under solventless conditions. Green Chem 4:64–67

    Article  CAS  Google Scholar 

  58. Morita DK, David SA, Tumas W, Pesiri DR, Glaze WH (1998) Palladium-catalyzed cross-coupling reactions in supercritical carbon dioxide. Chem Commun 1397–1398. doi: 10.1039/A802621A

    Google Scholar 

  59. Rathke JW, Klingler RJ, Krause TR (1991) Propylene hydroformylation in supercritical carbon dioxide. Organometallics 10:1350–1355

    Article  CAS  Google Scholar 

  60. Guo Y, Akgerman A (1997) Hydroformylation of propylene in supercritical carbon dioxide. Ind Eng Chem Res 36:4581–4585

    Article  CAS  Google Scholar 

  61. Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379

    Article  CAS  Google Scholar 

  62. Meehan NJ, Poliakoff M, Sandee AJ, Reek JNH, Kamer PCJ, van Leeuwen PWNM (2000) Continuous, selective hydroformylation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Chem Commun 1497–1498. doi: 10.1039/B002526G

    Google Scholar 

  63. Mistele CD, Thorp HH, DeSimone JM (1996) Ring-opening metathesis polymerizations in carbon dioxide. J Macromol Sci Pure Appl Chem 33:953–960

    Article  Google Scholar 

  64. Fürstner A, Koch D, Langemann K, Leitner W, Six C (1997) Olefin metathesis in compressed carbon dioxide. Angew Chem Int Ed Engl 36:2466–2469

    Article  Google Scholar 

  65. Fürstner A, Ackermann L, Beck K, Hori H, Koch D, Langemann K, Liebl M, Six C, Leitner W (2001) Olefin metathesis in supercritical carbon dioxide. J Am Chem Soc 123:9000–9006

    Article  CAS  Google Scholar 

  66. Randolph TW, Blanch HW, Prausnitz JM, Wilke CR (1985) Enzymatic catalysis in a supercritical fluid. Biotechnol Lett 7:325–328

    Article  CAS  Google Scholar 

  67. Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820

    Article  CAS  Google Scholar 

  68. Hampson JW, Foglia TA (1999) Effect of moisture content on immobilized lipase-catalyzed triacylglycerol hydrolysis under supercritical carbon dioxide flow in a tubular fixed-bed reactor. J Am Oil Chem Soc 76:777–781

    Article  CAS  Google Scholar 

  69. Oiveira JV, Oiveira D (2000) Kinetics of the enzymatic alcoholysis of palm kernel oil in supercritical CO2. Ind Eng Chem Res 39:4450–4454

    Article  CAS  Google Scholar 

  70. Jackson MA, King JW (1997) Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide. J Am Oil Chem Soc 74:103–106

    Article  CAS  Google Scholar 

  71. Tsitsimkou C, Stamatis H, Sereti V, Daflos H, Kolisis FN (1998) Acylation of glucose catalysed by lipases in supercritical carbon dioxide. J Chem Technol Biotechnol 71:309–314

    Article  Google Scholar 

  72. Yu ZR, Rizvi SSH, Zolloweg JA (1992) Enzymic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide. Biotechnol Prog 8:508–513

    Article  CAS  Google Scholar 

  73. Garcia-Arrazola R, López-Guerrero DA, Gimeno M, Bárzana E (2009) Lipase-catalyzed synthesis of poly-L-lactide using supercritical carbon dioxide. J Supercrit Fluids 51:197–201

    Article  CAS  Google Scholar 

  74. Chen J, Zhang JL, Han BX, Li JC, Li ZH, Feng XY (2006) Effect of compressed CO2 on the chloroperoxidase catalyzed halogenation of 1, 3-dihydroxybenzene in reverse micelles. Phys Chem Chem Phys 8:877–881

    Article  CAS  Google Scholar 

  75. Knez E (2009) Enzymatic reactions in dense gases. J Supercrit Fluids 47:357–372

    Article  CAS  Google Scholar 

  76. Licence P, Gray WK, Sokolova M, Poliakoff M (2005) Selective monoprotection of 1, n-terminal diols in supercritical carbon dioxide: a striking example of solvent tunable desymmetrization. J Am Chem Soc 127:293–298

    Article  CAS  Google Scholar 

  77. Gooden PN, Bourne RA, Parrott AJ, Bevinakatti HS, Irvine DJ, Poliakoff M (2010) Continuous acid-catalyzed methylations in supercritical carbon dioxide: comparison of methanol, dimethyl ether and dimethyl carbonate as methylating agents. Org Process Res Dev 14:411–416

    Article  CAS  Google Scholar 

  78. Hou ZS, Han BX, Zhang XG, Zhang HF, Liu ZM (2001) Pressure tuning of reaction equilibrium of esterification of acetic acid with ethanol in compressed CO2. J Phys Chem B 105:4510–4513

    Article  CAS  Google Scholar 

  79. Gao L, Wu WZ, Hou ZS, Jiang T, Han BX, Liu J, Liu ZM (2003) Transesterification between ethyl acetate and n-butanol in compressed CO2 in the critical region of the reaction system. J Phys Chem B 107:13093–13099

    Article  CAS  Google Scholar 

  80. Gray WK, Smail FR, Hitzler MG, Ross SK, Poliakoff M (1999) The continuous acid-catalyzed dehydration of alcohols in supercritical fluids: a new approach to the cleaner synthesis of acetals, ketals, and ethers with high selectivity. J Am Chem Soc 121:10711–10718

    Article  CAS  Google Scholar 

  81. Hou ZS, Han BX, Liu ZM, Jiang T, Yang GY (2002) Synthesis of dimethyl carbonate using CO2 and methanol: enhancing the conversion by controlling the phase behavior. Green Chem 4:467–471

    Article  CAS  Google Scholar 

  82. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399:28–29

    Article  Google Scholar 

  83. Jiang T, Han BX (2009) Ionic liquid catalytic systems and chemical reactions. Curr Org Chem 13:1278–1299

    Article  CAS  Google Scholar 

  84. Zhao GY, Jiang T, Wu WZ, Han BX, Liu ZM, Gao HX (2004) Electro-oxidation of benzyl alcohol in a biphasic system consisting of supercritical CO2 and ionic liquids. J Phys Chem B 108:13052–13057

    Article  CAS  Google Scholar 

  85. Zhang ZF, Wu WZ, Han BX, Jiang T, Wang B, Liu ZM (2005) Phase separation of the reaction system induced by CO2 and conversion enhancement for the esterification of acetic acid with ethanol in ionic liquid. J Phys Chem B 109:16176–16179

    Article  CAS  Google Scholar 

  86. Hou ZS, Han BX, Gao L, Jiang T, Liu ZM, Chang YH, Zhang XG, He J (2002) Wacker oxidation of 1-hexene in 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), supercritical (SC) CO2, and SC CO2/[bmim][PF6]mixed solvent. New J Chem 26:1246–1248

    Article  CAS  Google Scholar 

  87. Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588

    Article  CAS  Google Scholar 

  88. Biddulph RH, Plesch PH (1960) The low-temperature polymerisation of isobutene. Part IV. exploratory experiments. J Chem Soc 3913–3920. doi: 10.1039/JR9600003913

    Google Scholar 

  89. Desimone JM, Guan Z, Elsbernd CS (1992) Synthesis of fluoropolymers in supercritical carbon doxide. Science 257:945–947

    Article  CAS  Google Scholar 

  90. O'Connor P, Zetterlund PB, Aldabbagh F (2010) Effect of monomer loading and pressure on particle formation in nitroxide-mediated precipitation polymerization in supercritical carbon dioxide. Macromolecules 43:914–919

    Article  CAS  Google Scholar 

  91. Kim J, Dong LB, Kiserow DJ, Roberts GW (2009) Complex effects of the sweep fluid on solid-state polymerization: poly(bisphenol a carbonate) in supercritical carbon dioxide. Macromolecules 42:2472–2479

    Article  CAS  Google Scholar 

  92. Grignard B, Jerome C, Calberg C, Jerome R, Wang WX, Howdle SM, Detrembleur C (2008) Dispersion atom transfer radical polymerization of vinyl monomers in supercritical carbon dioxide. Macromolecules 41:8575–8583

    Article  CAS  Google Scholar 

  93. Chiou JS, Barlow JW, Paul DR (1985) Plasticization of glassy polymers by CO2. J Appl Polym Sci 30:2633–2642

    Article  CAS  Google Scholar 

  94. Wissinger RG, Paulaitis ME (1991) Molecular thermodynamic model for sorption and swelling in glassy polymer-carbon dioxide systems at elevated pressures. Ind Eng Chem Res 30:842–851

    Article  CAS  Google Scholar 

  95. Romang AH, Watkins JJ (2010) Supercritical fluids for the fabrication of semiconductor devices: emerging or missed opportunities? Chem Rev 110:459–478

    Article  CAS  Google Scholar 

  96. Matson DW, Fulton JL, Petersen RC, Smith RD (1987) Rapid expansion of supercritical fluid solutions: solute formation of powders, thin films, and fibers. Ind Eng Chem Res 26:2298–2306

    Article  CAS  Google Scholar 

  97. Reverchon E, Adami R, Cardea S, Della Porta G (2009) Supercritical fluids processing of polymers for pharmaceutical and medical applications. J Supercrit Fluids 47:484–492

    Article  CAS  Google Scholar 

  98. Sun YP, Guduru R, Lin F, Whiteside T (2000) Preparation of nanoscale semiconductors through the rapid expansion of supercritical solution (RESS) into liquid solution. Ind Eng Chem Res 39:4663–4669

    Article  CAS  Google Scholar 

  99. Türk M (2009) Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion processes. J Supercrit Fluids 47:537–545

    Article  CAS  Google Scholar 

  100. Gallagher PM, Coffey MP, Krukonis VJ, Hillstrom WW (1992) Gas anti-solvent recrystallization of RDX: Formation of ultra-fine particles of a difficult-to-comminute explosive. J Supercrit Fluids 5:130–142

    Article  CAS  Google Scholar 

  101. Reverchon E, Porta GD, Trolio AD, Pace S (1998) Supercritical antisolvent precipitation of nanoparticles of superconductor precursors. Ind Eng Chem Res 37:952–958

    Article  CAS  Google Scholar 

  102. Chen J, Zhang JL, Han BX, Li ZH, Li JC, Feng XY (2006) Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expanded micellar solutions. Colloids Surf B Biointerfaces 48:72–76

    Article  CAS  Google Scholar 

  103. Zhang JL, Han BX, Liu JC, Zhang XG, Liu ZM, He J (2001) A new method to recover the nanoparticles from reverse micelles: recovery of ZnS nanoparticles synthesized in reverse micelles by compressed CO2. Chem Commun 2724–2725. doi: 10.1039/B109802K

    Google Scholar 

  104. Zhang JL, Liu ZM, Han BX, Liu DX, Chen J, He J, Jiang T (2004) A novel method to synthesize polystyrene nanospheres immobilized with silver nanoparticles by using compressed CO2. Chem Eur J 10:3531–3536

    Article  CAS  Google Scholar 

  105. Watkins JJ, Blackburn JM, McCarthy TJ (1999) Chemical fluid deposition: reactive deposition of platinum metal from carbon dioxide solution. Chem Mater 11:213–215

    Article  CAS  Google Scholar 

  106. Blackburn JM, Long DP, Cabañas A, Watkins JJ (2001) Deposition of conformal copper and nickel films from supercritical carbon dioxide. Science 294:141–145

    Article  CAS  Google Scholar 

  107. Pessey V, Garriga R, Weill F, Chevalier B, Etourneau J, Cansell F (2000) Core-shell materials elaboration in supercritical mixture CO2/ethanol. Ind Eng Chem Res 39:4714–4719

    Article  CAS  Google Scholar 

  108. Loy DA, Russick EM, Yamanaka SA, Baugher BM, Shea KJ (1997) Direct formation of aerogels by sol-gel polymerizations of alkoxysilanes in supercritical carbon dioxide. Chem Mater 9:2264–2268

    Article  CAS  Google Scholar 

  109. Sui RH, Rizkalla AS, Charpentier PA (2004) Synthesis and formation of silica aerogel particles by a novel sol-gel route in supercritical carbon dioxide. J Phys Chem B 108:11886–11892

    Article  CAS  Google Scholar 

  110. Wang JW, Xia YD, Wang WX, Poliakoff M, Mokaya R (2006) Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. J Mater Chem 16:1751–1756

    Article  CAS  Google Scholar 

  111. Pai RA, Humayun R, Schulberg MT, Sengupta A, Sun JN, Watkins JJ (2004) Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303:507–510

    Article  CAS  Google Scholar 

  112. Zirkel L, Jakob M, Münstedt H (2009) Foaming of thin films of a fluorinated ethylene propylene copolymer using supercritical carbon dioxide. J Supercrit Fluids 49:103–110

    Article  CAS  Google Scholar 

  113. Tomasko DL, Burley A, Feng L, Yeh SK, Miyazono K, Nirmal-Kumar S, Kusaka I, Koelling K (2009) Development of CO2 for polymer foam applications. J Supercrit Fluids 47:493–499

    Article  CAS  Google Scholar 

  114. Watkins JJ, McCarthy TJ (1994) Polymerization in supercritical fluid-swollen polymers: a new route to polymer blends. Macromolecules 27:4845–4847

    Article  CAS  Google Scholar 

  115. Watkins JJ, McCarthy TJ (1995) Polymer/metal nanocomposite synthesis in supercritical CO2. Chem Mater 7:1991–1994

    Article  CAS  Google Scholar 

  116. Liao WS, Pan HB, Liu HW, Chen HJ, Wai CM (2009) Kinetic study of hydrodechlorination of chlorobiphenyl with polymer-stabilized palladium nanoparticles in supercritical carbon dioxide. J Phys Chem A 113:9772–9778

    Article  CAS  Google Scholar 

  117. Wang JQ, Zhang CL, Liu ZM, Ding KL, Yang ZZ (2006) A simple and efficient route to prepare inorganic compound/polymer composites in supercritical fluids. Macromol Rapid Commun 27:787–792

    Article  CAS  Google Scholar 

  118. Liu ZM, Han BX (2009) Synthesis of carbon-nanotube composites using supercritical fluids and their potential applications. Adv Mater 21:825–829

    Article  CAS  Google Scholar 

  119. Ye XR, Lin YH, Wang CM, Wai CM (2003) Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes. Adv Mater 15:316–319

    Article  CAS  Google Scholar 

  120. Fu L, Liu ZM, Liu YQ, Han BX, Wang JQ, Hu PA, Cao LC, Zhu DB (2004) Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv Mater 16:350–352

    Article  CAS  Google Scholar 

  121. Dai XH, Liu ZM, Han BX, Sun ZY, Wang Y, Xu J, Guo XL, Zhao N, Chen J (2004) Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2. Chem Commun 2190–2191. doi: 10.1039/B407605B

    Google Scholar 

  122. Wang JW, Khlobystov AN, Wang WX, Howdle SM, Poliakoff M (2006) Coating carbon nanotubes with polymer in supercritical carbon dioxide. Chem Commun 1670–1672

    Google Scholar 

  123. Wakayama H, Setoyama N, Fukushima Y (2003) Size-controlled synthesis and catalytic performance of Pt nanoparticles in micro- and mesoporous silica prepared using supercritical solvents. Adv Mater 15:742–745

    Article  CAS  Google Scholar 

  124. Lucky RA, Charpentier PA (2008) A one-Step approach to the synthesis of ZrO2-modified TiO2 nanotubes in supercritical carbon dioxide. Adv Mater 20:1755–1759

    Article  CAS  Google Scholar 

  125. O'Neil A, Watkins JJ (2007) Reactive deposition of conformal metal oxide films from supercritical carbon dioxide. Chem Mater 19:5460–5466

    Article  CAS  Google Scholar 

  126. Cangül B, Zhang LC, Aindow M, Erkey C (2009) Preparation of carbon black supported Pd, Pt and Pd-Pt nanoparticles using supercritical CO2 deposition. J Supercrit Fluids 50:82–90

    Article  CAS  Google Scholar 

  127. Klesper E, Corwin AH, Turner DA (1962) High pressure gas chromatography above critical temperatures. J Org Chem 27:700–701

    Article  CAS  Google Scholar 

  128. Lee ML, Markides KE (1987) Chromatography with supercritical fluids. Science 235:1342–1347

    Article  CAS  Google Scholar 

  129. Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluids 47:566–573

    Article  CAS  Google Scholar 

  130. Zhao YQ, Pritts WA, Zhang SH (2008) Chiral separation of selected proline derivatives using a polysaccharide-type stationary phase by supercritical fluid chromatography and comparison with high-performance liquid chromatography. J Chromatogr A 1189:245–253

    Article  CAS  Google Scholar 

  131. West C, Bouet A, Gillaizeau I, Coudert G, Lafosse M, Eric L (2010) Chiral separation of phospine-containing α-amino acid derivatives using two complementary cellulosic stationary phases in supercritical fluid chromatography. Chirality 22:242–251

    CAS  Google Scholar 

  132. Miller L, Potter M (2008) Preparative chromatographic resolution of racemates using HPLC and SFC in a pharmaceutical discovery environment. J Chromatogr B 875:230–236

    Article  CAS  Google Scholar 

  133. Desmortreux C, Rothaupt M, West C, Lesellier E (2009) Improved separation of furocoumarins of essential oils by supercritical fluid chromatography. J Chromatogr A 1216:7088–7095

    Article  CAS  Google Scholar 

  134. Takahashi K, Kinugasa S, Yoshihara R, Nakanishi A, Mosing RK, Takahashi R (2009) Evaluation of a condensation nucleation light scattering detector for the analysis of synthetic polymer by supercritical fluid chromatography. J Chromatogr A 1216:9008–9013

    Article  CAS  Google Scholar 

  135. Munshi P, Bhaduri S (2009) Supercritical CO2: a twenty-first century solvent for the chemical industry. Curr Sci 97:63–72

    CAS  Google Scholar 

  136. Liu ZT, Sun ZF, Liu ZW, Lu J, Xiong HP (2008) Benzylated modification and dyeing of ramie fiber in supercritical carbon dioxide. J Appl Polym Sci 107:1872–1878

    Article  CAS  Google Scholar 

  137. Montero GA, Smith CB, Hendrix WA, Butcher DL (2000) Supercritical fluid technology in textile processing: an overview. Ind Eng Chem Res 39:4806–4812

    Article  CAS  Google Scholar 

  138. van der Kraan M, Cid MVF, Woerlee GF, Veugelers WJT, Witkamp GJ (2007) Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes. J Supercrit Fluids 40:470–476

    Article  CAS  Google Scholar 

  139. Banchero M, Ferri A, Manna L (2009) The phase partition of disperse dyes in the dyeing of polyethylene terephthalate with a supercritical CO2/methanol mixture. J Supercrit Fluids 48:72–78

    Article  CAS  Google Scholar 

  140. Weibel GL, Ober CK (2003) An overview of supercritical CO2 applications in microelectronics processing. Microelectron Eng 65:145–152

    Article  Google Scholar 

  141. Ventosa C, Rébiscoul D, Perrut V, Ivanova V, Renault O, Passemard G (2008) Copper cleaning in supercritical CO2 for the microprocessor interconnects. Microelectron Eng 85:1629–1638

    Article  CAS  Google Scholar 

  142. Porta GD, Volpe MC, Reverchon E (2006) Supercritical cleaning of rollers for printing and packaging industry. J Supercrit Fluids 37:409–416

    Article  CAS  Google Scholar 

  143. Zhang XG, Pham JQ, Martinez HJ, Wolf PJ, Green PF, Johnston KP (2003) Water-in-carbon dioxide microemulsions for removing post-etch residues from patterned porous low-k dielectrics. J Vac Sci Technol B 21:2590–2598

    Article  CAS  Google Scholar 

  144. Zhang XG, Pham JQ, Ryza N, Green PF, Johnston KP (2004) Chemical-mechanical photoresist drying in supercritical carbon dioxide with hydrocarbon surfactants. J Vac Sci Technol B 22:818–825

    Article  CAS  Google Scholar 

  145. Johnston KP, da Rocha SRP (2009) Colloids in supercritical fluids over the last 20 years and future directions. J Supercrit Fluids 47:523–530

    Article  CAS  Google Scholar 

  146. Zhang JL, Han BX (2009) Supercritical CO2-continuous microemulsions and compressed CO2-expanded reverse microemulsions. J Supercrit Fluids 47:531–536

    Article  CAS  Google Scholar 

  147. Liu JH, Cheng SQ, Zhang JL, Feng XY, Fu XG, Han BX (2007) Reverse micelles in carbon dioxide with ionic-liquid domains. Angew Chem Int Ed 46:3313–3315

    Article  CAS  Google Scholar 

  148. Zhang R, Liu J, He J, Han BX, Zhang XG, Liu ZM, Jiang T, Hu GH (2002) Compressed CO2-assisted formation of reverse micelles of PEO-PPO-PEO copolymer. Macromolecules 35:7869–7871

    Article  CAS  Google Scholar 

  149. Zhang JL, Han BX, Li W, Zhao YJ, Hou MQ (2008) Reversible switching of lamellar liquid crystals into micellar solutions using CO2. Angew Chem Int Ed 47:10119–10123

    Article  CAS  Google Scholar 

  150. Li W, Zhang JL, Zhao YJ, Hou MQ, Han BX, Yu CL, Ye JP (2010) Reversible switching a micelle-to-vesicle transition reversibly by compressed CO2. Chem Eur J 16:1296–1305

    Article  CAS  Google Scholar 

Books and Reviews

  • Anastas PT, Farris CA (1994) Benign by design: alternative synthetic design for pollution prevention, vol 577. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Brunner G (2004) Supercritical fluid as solvents and reaction media. Elsevier, Amsterdam

    Google Scholar 

  • Centi G, Perathoner S (2002) Selective oxidation-industrial, Encyclopedia of catalysis. Wiley, New York. doi:10.1002/0471227617.eoc188

    Google Scholar 

  • Clifford AA (1998) Fundamentals of supercritical fluid. Oxford University Press, Oxford, UK

    Google Scholar 

  • Gupta RB, Shim JJ (2007) Solubility in supercritical carbon dioxide. CRC Press, Boca Raton

    Google Scholar 

  • Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction, 2nd edn. Butterworth-Heinemann, Stoneham, MA

    Google Scholar 

  • Noyori R (1994) Asymmetric catalysis in organic Synthesis. John Wiley & Sons, New York

    Google Scholar 

  • Quinn EL, Jones CL (1936) Carbon dioxide. Reinhold, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, T., Han, B. (2013). Supercritical Carbon Dioxide (CO2) as Green Solvent. In: Anastas, P., Zimmerman, J. (eds) Innovations in Green Chemistry and Green Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5817-3_10

Download citation

Publish with us

Policies and ethics