Skip to main content

Comments and Open Problems

  • Chapter
  • First Online:
  • 958 Accesses

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

In this chapter, we briefly present the conclusions of this book and we list some open problems related to the issues discussed in this monograph.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agut C., Diaz J.: Stability analysis of the interior penalty DG method for the wave equation. ESAIM: Math. Model. Numer. Anal. 47(3), 903–932 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ainsworth M.: Dispersive and dissipative behaviour of high order DG finite element methods. J. Comput. Phys. 198(1), 106–130 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ainsworth M., Monk P., Muniz W.: Dispersive and dissipative properties of DG finite element methods for the second-order wave equation. J. Sci. Comput. 27(1–3), 5–40 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Antonietti P.F., Buffa A., Perugia I.: DG approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Engrg. 195(25–28), 3483–3505 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of DG methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Atkins H.L., Hu F.Q.: Eigensolution analysis of the DG method with nonuniform grids: I. One space dimension. J. Comput. Phys. 182(2), 516–545 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Bahouri H., Chemin J.Y., Danchin R.: Fourier Analysis and Nonlinear PDEs. Springer, New York (2011)

    Google Scholar 

  9. Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Contr. Optim. 30, 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Belytschko T., Mullen R.: On dispersive properties of finite element solutions. Modern Problems in Elastic Wave Propagation. Wiley, New York (1978)

    Google Scholar 

  11. Brezzi F., Cockburn B., Marini L.D., Süli E.: Stabilization mechanisms in DG finite element methods. J. Comput. Methods Appl. Mech. Engrg. 195, 3293–3310 (2006)

    Article  MATH  Google Scholar 

  12. Brillouin L.: Wave Propagation and Group Velocity. Academic Press, New York (1960)

    MATH  Google Scholar 

  13. Burq N., Gérard P.: Contrôle optimal des equations aux derivées partielles. Cours de l’École Polytechnique (2002)

    Google Scholar 

  14. Calo V., Demkowicz L., Gopalakrishnan J., Muga I., Pardo D., Zitelli J.: A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1 − d. J. Comput. Phys. 230, 2406–2432 (2011)

    Google Scholar 

  15. Castro C., Micu S.: Boundary controllability of a linear semi-discrete 1 − d wave equation derived from a mixed finite element method. Numer. Math. 102(3), 413–462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chironis N.P., Sclater N.: Mechanisms and Mechanical Devices Sourcebook, 3th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  17. Cockburn B.: Discontinuous Galerkin methods. Z. Agnew. Math. Mech. 83(11), 731–754 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cockburn B., Gopalakrishnan J., Lazarov R.: Unified hybridization of DG, mixed and continuous Galerkin methods for second-order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cockburn B., Karniadakis G., Shu C.W.: The development of DG methods, in Discontinuous Galerkin methods. Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Berlin (2000)

    Google Scholar 

  20. Cockburn B., Shu C.W.: The local DG finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  22. Demkowicz L., Gopalakrishnan J., Muga I., Zitelli J.: Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput. Meth. Appl. Mechan. Eng. 213–216 (2012)

    Google Scholar 

  23. Ervedoza S.: Observability properties of a semi-discrete 1 − d wave equation derived from a mixed finite element method on non-uniform meshes. ESAIM: COCV 16(2), 298–326 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ervedoza S., Marica A., Zuazua E.: Uniform observability property for discrete waves on strictly concave non-uniform meshes: a multiplier approach, in preparation.

    Google Scholar 

  25. Ervedoza S., Zheng C., Zuazua E.: On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254(12), 3037–3078 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ervedoza S., Zuazua E.: A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1375–1401 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ervedoza S., Zuazua E.: The wave equation: control and numerics, in Control of PDEs. Cetraro, Italy 2010, In: Cannarsa P.M and Coron J.M. (eds.), Lecture Notes in Mathematics, vol. 2048, pp. 245–339. Springer, New York (2012)

    Google Scholar 

  28. Ervedoza S., Zuazua E.: On the numerical approximation of controls for waves. Springer Briefs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  29. Feng X., Wu H.: DG methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gérard P., Markowich P.A., Mauser N.J., Poupaud F.: Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. (50)(4), 323–379 (1997)

    Google Scholar 

  31. Glowinski R.: Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103(2), 189–221 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Glowinski R., He J., Lions J.L.: Exact and approximate controllability for distributed parameter systems: a numerical approach. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  33. Glowinski R., Li C.H., Lions J.L.: A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7(1), 1–76 (1990)

    MATH  MathSciNet  Google Scholar 

  34. Grenander U., Szegö G.: Toeplitz Forms and Their Applications. Chelsea Publishing, New York (1984)

    MATH  Google Scholar 

  35. Grote M.J., Schneebeli A., Schötzau D.: DG finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hu F.Q., Hussaini M.Y., Rasetarinera P.: An analysis of the DG method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)

    Article  MATH  Google Scholar 

  37. Ignat L., Zuazua E.: Convergence of a two-grid algorithm for the control of the wave equation. J. Eur. Math. Soc. 11(2), 351–391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ignat L., Zuazua E.: Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47(2), 1366–1390 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Infante J.A., Zuazua E.: Boundary observability for the space-discretizations of the one-dimensional wave equation. M2AN, 33(2), 407–438 (1999)

    Google Scholar 

  40. Kalman R.E.: On the general theory of control systems, Proceeding of First International Congress of IFAC, vol. 1, pp. 481–492. Moscow (1960)

    Google Scholar 

  41. Lebeau G.:Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. 71, 267–291 (1992)

    Google Scholar 

  42. Lieb E.H., Loss M.: Analysis. Graduate Studies in Mathematics, vol. 14. AMS, Providence, RI (1997)

    Google Scholar 

  43. Linares F., Ponce G.: Introduction to Nonlinear Dispersive Equations. Springer, New York (2009)

    MATH  Google Scholar 

  44. Lions J.L.: Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, vol. 1. Masson, Paris (1988)

    Google Scholar 

  45. Loreti P., Mehrenberger M.: An Ingham type proof for a two-grid observability theorem. ESAIM: COCV 14(3), 604–631 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. Macià F.: Propagación y control de vibraciones en medios discretos y continuos. PhD Thesis, Universidad Complutense de Madrid (2002)

    Google Scholar 

  47. Macìa F.: Wigner measures in the discrete setting: high frequency analysis of sampling and reconstruction operators. SIAM J. Math. Anal. 36(2) 347–383 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Markowich P.A., Poupaud F.: The Pseudo-Differential Approach to Finite Difference Revisited, vol. 36, pp. 161–186. Calcolo, Springer, New York (1999)

    Google Scholar 

  49. Marica A., Zuazua E.: Localized solutions for the finite difference semi-discretization of the wave equation. C. R. Acad. Sci. Paris Ser. I 348, 647–652 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  50. Marica A., Zuazua E.: Localized solutions and filtering mechanisms for the DG semi-discretizations of the 1 − d wave equation. C. R. Acad. Sci. Paris Ser. I 348, 1087–1092 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Marica A., Zuazua E.: High frequency wave packets for the Schrödinger equation and its numerical approximations. C. R. Acad. Sci. Paris Ser. I 349, 105–110 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Marica A., Zuazua E.: On the quadratic finite element approximation of one-dimensional waves: propagation, observation, and control. SIAM J. Numer. Anal. 50(5), 2744–2777 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  53. Marica A., Zuazua E.: On the quadratic finite element approximation of 1 − d waves: propagation, observation, control and numerical implementation, CFL-80: A Celebration of 80 Years of the Discovery of CFL Condition. Kubrusly, C., Moura C.A. (eds.) Springer Proceedings in Mathematics, pp. 75–100 Springer, New York (2012)

    Google Scholar 

  54. Marica A., Zuazua E.: Propagation of 1 − d waves in regular discrete heterogeneous media: a Wigner measure approach, accepted in FoCM

    Google Scholar 

  55. Mariegaard J.S.: Numerical approximation of boundary control for the wave equation. Ph.D. Thesis, Department of Mathematics, Technical University of Denmark (2009)

    Google Scholar 

  56. Micu S.: Uniform boundary controllability of a semi-discrete 1 − d wave equation. Numer. Math. 91(4), 723–768 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. Micu S.: Uniform boundary controllability of a semi-discrete 1 − d wave equation with vanishing viscosity. SIAM J. Control Optim. 47(6), 2857–2885 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  58. Micu S., Zuazua E.: An Introduction to the controllability of partial differential equations, in Quelques questions de théorie du contrôle. In: Sari T. (ed.) Collection Travaux en Cours, pp. 69–157. Hermann, Paris (2005)

    Google Scholar 

  59. Negreanu M., Zuazua E.: Convergence of a multigrid method for the controllability of a 1 − d wave equation. C. R. Math. Acad. Sci. Paris 338, 413–418 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  60. Rose H.E.: Linear Algebra. A pure Mathematical Approach. Springer, New York (2002)

    Book  MATH  Google Scholar 

  61. Sherwin S.:Dispersion analysis of the continuous and DG formulations, in Discontinuous Galerkin methods. Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11, pp. 425–431. Springer, New York (2000)

    Google Scholar 

  62. Showalter R.E.: Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs, vol. 49. AMS, Providence, RI (1997)

    Google Scholar 

  63. Simon J.: Compact sets in the space L p(0, T; B). Annali di matematica pura ed applicata IV(CXLVI), 65–96 (1987)

    Google Scholar 

  64. Sontag E.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  65. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970)

    Google Scholar 

  66. Tebou Tcheougoué L.R., Zuazua E.: Uniform boundary stabilization of the finite difference space discretization of the 1 − d wave equation. Adv. Comput. Math. 26(1–3), 337–365 (2007)

    Article  MathSciNet  Google Scholar 

  67. Trefethen L.N.: Group velocity in finite difference schemes. SIAM Rev. 24(2), 113–136 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  68. Zuazua E.: Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures et Appl. 70, 513–529 (1991)

    MATH  MathSciNet  Google Scholar 

  69. Zuazua E.: Boundary observability for the finite difference space semi-discretizations of the 2 − d wave equation in the square. J. Math. Pures Appl. 78(5) 523–563 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  70. Zuazua E.: Propagation, observation, control and numerical approximation of waves. SIAM Review 47(2), 197–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  71. Zuazua E.: Controllability and observability of PDEs: Some results and open problems. In: Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 527–621. In Dafermos C. M. and Feireisl E. (eds.) Elsevier B. V. North Holland (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Aurora Marica, Enrique Zuazua

About this chapter

Cite this chapter

Marica, A., Zuazua, E. (2014). Comments and Open Problems. In: Symmetric Discontinuous Galerkin Methods for 1-D Waves. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5811-1_8

Download citation

Publish with us

Policies and ethics