Skip to main content

Numerical Approximation of Exact Controls for Waves

  • Chapter
  • First Online:
Numerical Approximation of Exact Controls for Waves

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

We present an abstract framework in which our methods and approach apply, the wave equation being a particular instance that we present in Sect. 1.7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Auroux, J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Math. Acad. Sci. Paris 340(12), 873–878 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. G.A. Baker, J.H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13(2), 75–100 (1979)

    MathSciNet  MATH  Google Scholar 

  3. C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Contr. Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.C. Brenner, L.R. Scott, The mathematical theory of finite element methods, in Texts in Applied Mathematics, vol. 15 (Springer, New York, 1994)

    Google Scholar 

  5. N. Burq, P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)

    Article  MATH  Google Scholar 

  6. C. Castro, S. Micu, Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method. Numer. Math. 102(3), 413–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Castro, S. Micu, A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28(1), 186–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. P.G. Ciarlet, in Introduction à l’analyse numérique matricielle et àl’ optimisation. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master’s Degree] (Masson, Paris, 1982)

    Google Scholar 

  9. N. Cîndea, S. Micu, M. Tucsnak, An approximation method for exact controls of vibrating systems. SIAM J. Contr. Optim. 49(3), 1283–1305 (2011)

    Article  MATH  Google Scholar 

  10. J.-M. Coron, S. Ervedoza, O. Glass, Uniform observability estimates for the 1-d discretized wave equation and the random choice method. Comptes Rendus Mathematique 347(9–10), 505–510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Dehman, G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Contr. Optim. 48(2), 521–550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math. 113(3), 377–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Ervedoza, Observability properties of a semi-discrete 1D wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM Contr. Optim. Calc. Var. 16(2), 298–326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Ervedoza, E. Zuazua, A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1375–1401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Ervedoza, E. Zuazua, The wave equation: control and numerics, in Control of Partial Differential Equations, ed. by P.M. Cannarsa, J.M. Coron. Lecture Notes in Mathematics, CIME Subseries (Springer, New York, 2012), pp. 245–340

    Google Scholar 

  16. S. Ervedoza, E. Zuazua, Propagation, Observation and Numerical Approximations of Waves. Book in preparation.

    Google Scholar 

  17. R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103(2), 189–221 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Glowinski, C.H. Li, On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation. C. R. Acad. Sci. Paris Sér. I Math. 311(2), 135–142 (1990)

    MathSciNet  MATH  Google Scholar 

  19. R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7(1), 1–76 (1990)

    MathSciNet  MATH  Google Scholar 

  20. R. Glowinski, J.-L. Lions, J. He, in Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications, vol. 117 (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  21. G. Haine, K. Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math. 120(2), 307–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. J.A. Infante, E. Zuazua, Boundary observability for the space semi discretizations of the 1-d wave equation. Math. Model. Num. Ann. 33, 407–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Ito, K. Ramdani, M. Tucsnak, A time reversal based algorithm for solving initial data inverse problems. Discrete Contin. Dyn. Syst. Ser. S 4(3), 641–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Komornik, in Exact controllability and stabilization: The multiplier method. RAM: Research in Applied Mathematics (Masson, Paris, 1994)

    Google Scholar 

  25. I. Lasiecka, R. Triggiani, Regularity of hyperbolic equations under L 2 (0, T; L 2 (Γ))-Dirichlet boundary terms. Appl. Math. Optim. 10(3), 275–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.-L. Lions, in Contrôle des systèmes distribués singuliers. Lectures at Collège de France, 1982 (Gauthier Villars, Paris, 1983)

    Google Scholar 

  27. J.-L. Lions, in Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, RMA, vol. 8 (Masson, Paris, 1988)

    Google Scholar 

  28. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1–68 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Macià, The effect of group velocity in the numerical analysis of control problems for the wave equation, in Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003(Springer, Berlin, 2003), pp. 195–200

    Google Scholar 

  30. S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math. 91(4), 723–768 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Miller, Resolvent conditions for the control of unitary groups and their approximations. J. Spectra. Theor. 2(1), 1–55 (2012).

    Article  MATH  Google Scholar 

  32. M. Negreanu, E. Zuazua, Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338(5), 413–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Negreanu, A.-M. Matache, C. Schwab, Wavelet filtering for exact controllability of the wave equation. SIAM J. Sci. Comput. 28(5), 1851–1885 (electronic) (2006)

    Google Scholar 

  34. K. Ramdani, T. Takahashi, M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations—application to LQR problems. ESAIM Contr. Optim. Calc. Var. 13(3), 503–527 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24(2), 113–136 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Vichnevetsky, J.B. Bowles, in Fourier analysis of numerical approximations of hyperbolic equations. SIAM studies in applied mathematics, vol. 5 (SIAM, Philadelphia, 1982). With a foreword by G. Birkhoff

    Google Scholar 

  37. E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. (9) 78(5), 523–563 (1999)

    Google Scholar 

  38. E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (electronic) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Sylvain Ervedoza and Enrique Zuazua

About this chapter

Cite this chapter

Ervedoza, S., Zuazua, E. (2013). Numerical Approximation of Exact Controls for Waves. In: Numerical Approximation of Exact Controls for Waves. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5808-1_1

Download citation

Publish with us

Policies and ethics