Advertisement

Science and Conservation in the Galapagos Islands

  • Carlos A. ValleEmail author
Chapter
  • 1.5k Downloads
Part of the Social and Ecological Interactions in the Galapagos Islands book series (SESGI, volume 1)

Abstract

The contribution of the Galapagos Islands to increasing our understanding of evolution can hardly be surpassed by any other place of similar size on Earth. Evolutionary biology research on the Galapagos spans studies on the origins of life to molecular phylogeny and evolutionary developmental biology. Most pioneering research conducted on the Galapagos was basic descriptive natural history that focused on the evolutionary ecology of endemic species, with an emphasis on the patterns and mechanisms of adaptation, geographic distribution, and taxonomic affinities, based mostly on appearance and behavior. Modern research, however, such as that conducted by Peter and Rosemary Grant and several other scientists, has made the transition from descriptive patterns to a more quantitative and scientific orientation that features the testing of hypotheses about the evolution and conservation of Galapagos organisms and ecosystems. Now, the study of speciation and adaptive radiation, two common evolutionary processes found on oceanic archipelagos like the Galapagos, can be tracked in time and space, owing to the development of modern molecular genetic techniques and its application to the study of phylogenies (molecular phylogeny) and biography (phylogeography). Island ecosystems and organisms offer a unique opportunity for the study of the fundamental principles of evolution, including natural selection, adaptation, and speciation. Both the Galapagos National Park, as the authority, and scientists deserve much recognition for maintaining the manipulation of organisms and ecosystems at a minimal level to preserve the systems under study. Here, the most relevant subjects on the principles and mechanisms of evolutionary biology are succinctly addressed by research studies conducted in the Galapagos Islands. By no means does the review include all of the fascinating studies that have been conducted since Darwin’s memorable visit to the Galapagos 174 years ago on 16 September 1835.

Keywords

Galapagos Island Evolutionary Radiation Marine Iguana Giant Tortoise Galapagos Archipelago 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbott I, Abbott LK (1978) Multivariate study of morphological variation in Galapagos and Ecuadorian mockingbirds. Condor 80:302–308CrossRefGoogle Scholar
  2. Arbogast BS, Drovetski SV, Curry LR, Boag PT, Seutin G, Grant PR, Grant BR, Anderson DJ (2006) The origin and diversification of Galapagos mockingbirds. Evolution 60:370–382Google Scholar
  3. Baert L (2000) Invertebrate research overview: 1. Terrestrial arthropods. In: Sitwell N, Baert L, Coppois G (eds) Science for conservation in Galapagos. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Suplement 70:23–25Google Scholar
  4. Bailey K (1976) Potassium–argon ages from the Galapagos Islands. Science 192:465–466CrossRefGoogle Scholar
  5. Bollmer JL, Whiteman NK, Cannon MD, Bednarz JC, de Vries T, Parker PG (2005) Population genetics of the Galapagos Hawk (Buteo galapagoensis): genetic monomorphism within isolated populations. Auk 122:1210–1224CrossRefGoogle Scholar
  6. Bollmer JL, Kimball RT, Whiteman NK, Sarasola JH, Parker PG (2006) Phylogeography of the Galapagos hawk (Buteo galapagoensis): a recent arrival to the Galapagos Islands. Mol Phylogenet Evol 39:237–247CrossRefGoogle Scholar
  7. Bollmer JL, Vargas FH, Parker PG (2007) Low MHC variation in the endangered Galapagos penguin (Spheniscus mendiculus). Immunogenetics 59:593–602CrossRefGoogle Scholar
  8. Bowman RI (1963) Evolutionary patterns in Darwin’s finches. Occas Pap Calif Acad Sci 44:107–140Google Scholar
  9. Bowman RI (1979) Adaptive morphology of song dialects in Darwin’s finches. J Ornithol 120:353–389CrossRefGoogle Scholar
  10. Bowman RI (1984) Contributions to science from the Galapagos. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 277–311Google Scholar
  11. Branch GM, Whitman JD, Bensted-Smith R, Bustamante RH, Wellington GM, Smith F, Edgar GJ (2002) Conservation criteria for the marine biome. In: Benson-Smith R (ed) A biodiversity vision for the Galapagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, Galapagos, pp 80–95Google Scholar
  12. Bustamante RH, Branch GM, Bensted-Smith R, Edgar GJ (2002) In: Benson-Smith R (ed) A biodiversity vision for the Galapagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, Galapagos, pp 80–95Google Scholar
  13. Caccone A, Gibbs JP, Ketmaier V, Suatoni E, Powell JR (1999) Origin and evolutionary relationships of giant Galapagos tortoises. Proc Natl Acad Sci USA 96:13223–13228CrossRefGoogle Scholar
  14. Caccone A, Gentile G, Gibbs JP, Fritts TH, Snell HL, Betts J, Powell JR (2002) Phylogeography and history of giant Galapagos tortoises. Evolution 56:2052–2066Google Scholar
  15. Campbell K, Donlan CJ, Cruz F, Carrion V (2004) Eradication of feral goats Capra hircus from Pinta Island, Galapagos, Ecuador. Oryx 38:1–6CrossRefGoogle Scholar
  16. Cane MA (1983) Oceanographic events during El Niño. Science 222:1189–1194CrossRefGoogle Scholar
  17. Carlquist S (1965) Island life. Natural History Press, Garden City, New YorkGoogle Scholar
  18. Causton C, Sevilla C (2008) Latest records of introduced invertebrates in Galapagos and measures to control them. Galapagos report 2006–2007. CDF, GNP and INGALA, Puerto Ayora, Galapagos, Ecuador, pp 142–145Google Scholar
  19. Christie DM, Duncan RA, McBirney AR, Richards MA, White WM, Harpp KS, Fox CG (1992) Drowned islands downstream from the Galapagos hotspot imply extended speciation times Nature 355:246–248Google Scholar
  20. Clark D (1984) Native land mammals. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 225–231Google Scholar
  21. Colinvaux PA (1968) Reconnaissance and chemistry of the lakes and bogs of the Galapagos Islands. Nature 219:590–594CrossRefGoogle Scholar
  22. Colinvaux PA (1972) Climate and the Galapagos Islands. Nature 240:17–20CrossRefGoogle Scholar
  23. Colinvaux PA (1984) The Galapagos climate: present and past. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 55–69Google Scholar
  24. Colinvaux PA, Schofield EK (1976a) Historical ecology in the Galapagos Islands. I. A Holocene pollen record from Isla San Cristobal. J Ecol 64:989–1012CrossRefGoogle Scholar
  25. Colinvaux PA, Schofield EK (1976b) Historical ecology in the Galapagos Islands. II. A Holocene spore record from Isla San Cristobal. J Ecol 64:1013–1026CrossRefGoogle Scholar
  26. Connell JH, Sousa WP (1983) On the evidence needed to judge ecological stability or persistence. Am Nat 121:789–824CrossRefGoogle Scholar
  27. Conroy JL, Overpeck JT, Cole JE, Shanahan TM, Steinitz-Kannan M (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galapagos lake sediment record. Quaternary Sci Rev 27:1166–1180CrossRefGoogle Scholar
  28. Cox A (1971) Paleomagnetism of San Cristobal Island, Galapagos. Earth Planet Sci Lett 11:152–160CrossRefGoogle Scholar
  29. Cox A (1983) Ages of the Galapagos Islands. In: Bowman RI, Berson M, Leviton AE (eds) Patterns of evolution in Galapagos organisms. American Association for the Advancement of Science, Pacific Division, San Francisco, CA, pp 123–155Google Scholar
  30. Crawley MJ (1987) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell Scientific, Oxford, pp 429–453Google Scholar
  31. Cronin TM, Dowsett HJ (1996) Biotic and oceanographic response to the Pliocene closing of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 76–104Google Scholar
  32. De Roy T (ed) (2009) Galapagos: preserving Darwin’s legacy. David Bateman Ltd., New ZealandGoogle Scholar
  33. De Vries T (1984) The giant tortoises: a natural history disturbed by man. In: Perry R (ed) Key environments. Oxford Pergamon Press, Galapagos, pp 145–156Google Scholar
  34. Duffie CV, Glenn TC, Hagen C, Parker PG (2008) Microsatellite markers isolated from the flightless cormorant (Phalacrocorax harrisi). Mol Ecol Resour 8:625–627CrossRefGoogle Scholar
  35. Duffie CV, Glenn TC, Vargas FH, Parker PG (2009) Genetic structure within and between island populations of the flightless cormorant (Phalacrocorax harrisi). Mol Ecol 18:2103–2111CrossRefGoogle Scholar
  36. Edgar GJ, Banks S, Fariña M, Calvopiña M, Martínez C (2004) Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J Biogeogr 31:1107–1124CrossRefGoogle Scholar
  37. Eibl-Eibesfeldt I (1958) The Galapagos Islands: a laboratory of evolution. New Sci 4:250–253Google Scholar
  38. Eibl-Eibesfeldt I (1984a) The large iguanas of the Galapagos Islands. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 157–173Google Scholar
  39. Eibl-Eibesfeldt I (1984b) The Galapagos seals. Part 1. Natural history of the Galapagos sea lion (Zalophus californianus wollebaeki, Sivertsen). In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 207–214Google Scholar
  40. Eliasson U (1984) Native climax forest. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 101–114Google Scholar
  41. Ferodov AV, Dekens PS, McCarthy M, Revelo AC, de Menocal PB, Barreiro M, Pacanowski RC, Philander SG (2006) The Pliocene paradox (mechanisms for a permanent El Niño). Science 312:1485–1489CrossRefGoogle Scholar
  42. Fessl B, Kleindorfer S, Tebbich S (2006) An experimental study on the effects of an introduced parasite in Darwin’s finches. Biol Conserv 127:55–61CrossRefGoogle Scholar
  43. Geist D (1996) On the emergence and submergence of the Galapagos Islands. Not Galapagos 56:5–9Google Scholar
  44. Geist D (2009) Islands on the move: significance of hotspot volcanoes. In: de Roy T (ed) Galapagos: preserving Darwin’s legacy. David Bateman Ltd, New Zealand, pp 28–35Google Scholar
  45. Gentile G, Fabiani A, Marquez C, Snell HL, Snell HM, Tapia W, Sbordoni V (2009) An overlooked pink species of land iguana in the Galapagos. Proc Natl Acad Sci 106:507–511CrossRefGoogle Scholar
  46. Glynn PW (1986) Ecological effects of the 1982/83 El Niño Associate Disturbance to Eastern Pacific coral reefs. Progress Report 1986. CDRS Library, pp 1–13Google Scholar
  47. Glynn PW (1994) State of coral reefs in the Galapagos Islands: natural vs. anthropogenic impacts. Mar Pollut Bull 29:131–140CrossRefGoogle Scholar
  48. Gottdenker N, Walsh T, Vargas H, Duncan M, Merkel J, Jimenez G, Miller RE, Dailey M, Parker PG (2005) Assessing the risks of introduced chickens and their pathogens to native birds in the Galapagos Archipelago. Biol Conserv 126:429–439CrossRefGoogle Scholar
  49. Grant PR (1984) The endemic land birds. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 175–189Google Scholar
  50. Grant PR (1999) Ecology and evolution of Darwin’s finches, 2nd edn. Princeton University Press, Princeton, NJGoogle Scholar
  51. Grant BR, Grant PR (1989) Evolutionary dynamics of a natural population: the large cactus finch of the Galapagos. University of Chicago Press, ChicagoGoogle Scholar
  52. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313:224–226CrossRefGoogle Scholar
  53. Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeton, NJGoogle Scholar
  54. Grove J (1985) Influence of the 1982–1983 El Niño event upon the icthyofauna of the Galapagos archipelago. In: Robinson G, Del Pino E (eds) El Niño en las Islas Galapagos: Evento 1982–1993. Charles Darwin Foundation, Galapagos, Ecuador, pp 245–258Google Scholar
  55. Harris MP (1984) Seabirds. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 191–206Google Scholar
  56. Herbold R, Moyle PB (1986) Introduced species and vacant niches. Am Nat 128:751–760CrossRefGoogle Scholar
  57. Hoeck PEA, Bollmer JL, Parker PG, Keller LF (2010) Differentiation with drift: a spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.). Phil Trans R Soc B 365:1127–1138CrossRefGoogle Scholar
  58. Houvenaghel GT (1984) Oceanographic setting of the Galapagos Islands. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 225–231Google Scholar
  59. Hull JM, Savage WK, Bollmer JL, Kimball RT, Parker PG, Whiteman NK, Ernest HB (2008) On the origin of the Galapagos hawk: an examination of phenotypic differentiation and mitochondrial paraphyly. Biol J Linn Soc 95:779–789CrossRefGoogle Scholar
  60. Huxley JS (1938) Species formation and geographic isolation. Proc Linn Soc Lond 150:253–264CrossRefGoogle Scholar
  61. Jiménez-Uzcátegui G, Carrión V, Zabala J, Buitrón P, Milstead B (2008) Status of introduced vertebrates in Galapagos. Galapagos report 2006–2007. Charles Darwin Foundation, Puerto Ayora, pp 136–141Google Scholar
  62. Jiménez-Uzcátegui G, Carrión V, Zabala J, Buitrón P, Milstead B (2008) Status of introduced vertebrates in Galapagos. Galapagos report 2007–2008. Charles Darwin Foundation, Puerto Ayora, pp 97–102Google Scholar
  63. Jordan MA, Snell HL (2008) Historical fragmentation of islands and genetic drift in populations of Galapagos lava lizards (Microlophus albemarlensis complex). Mol Ecol 17:1224–1237CrossRefGoogle Scholar
  64. Jordan MA, Hammond RL, Snell HL, Jordan WC (2002) Isolation and characterization of microsatellite loci from Galapagos lava lizards (Microlophus spp.). Mol Ecol Notes 2:349–351CrossRefGoogle Scholar
  65. Kennedy M, Valle CA, Spencer HG (2009) The phylogenetic position of the Galápagos Cormorant. Mol Phylogenet Evol 53:94–98Google Scholar
  66. Kizirian D, Trager A, Donnelly MA, Wright JW (2004) Evolution of Galapagos Island lava lizards (Iguania: Tropiduridae: Microlophus). Mol Phylogenet Evol 32:761–769CrossRefGoogle Scholar
  67. Lack D (1947) Darwin’s finches. Cambridge University Press, CambridgeGoogle Scholar
  68. Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686CrossRefGoogle Scholar
  69. Lande R (1980) Genetic variation and phenotypic evolution during allopatric speciation. Am Nat 116:463–479CrossRefGoogle Scholar
  70. Lande R, Barrowclough GF (1987) Effective population size, genetic variation, and their use in population management. In: Soule ME (ed) Viable populations for conservation. Cambridge University Press, New York, pp 87–123CrossRefGoogle Scholar
  71. Larson EJ (2001) Evolution’s workshop: God and science on the Galapagos Islands. Basic Books, New YorkGoogle Scholar
  72. Laurie A (1985) Santa Fe news letter. Noticias de Galapagos 41:20–21CrossRefGoogle Scholar
  73. Lea DW, Pak DK, Belanger CL, Spero HJ, Hall MA, Shackleton NJ (2006) Paleoclimate history of Galapagos surface waters over the last 135,000 yr. Quaternary Sci Rev 25:1152–1167CrossRefGoogle Scholar
  74. Levin I, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195Google Scholar
  75. Limberger D (1985) El Niño on Fernandina. In: Robinson G, Del Pino E (eds) El Niño en las Islas Galapagos: Evento 1982–1993. Charles Darwin Foundation, Galapagos, Ecuador, pp 245–258Google Scholar
  76. Lopez TJ, Hauselman ED, Maxson LR, Wright JW (1992) Preliminary analysis of phylogenetic relationships among Galapagos Island lizards of the genus Tropidurus. Amphibia-Reptilia 13:327–339CrossRefGoogle Scholar
  77. Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5:148–157CrossRefGoogle Scholar
  78. Mayr E (1954) Change in genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen & Unwin, London, pp 157–180Google Scholar
  79. Mayr E (1982) The growth of biological thought: diversity, evolution, and inheritance. Harvard University Press, CambridgeGoogle Scholar
  80. McArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJGoogle Scholar
  81. McBirney AR, Williams H (1969) Geology and petrology of the Galapagos Islands. In: Bowman RI (ed) The Galapagos, Proceedings of the Symposia G.I.S.P. University of California Press, Berkeley, pp 65–70Google Scholar
  82. Milinkovitch MC, Monteyne D, Gibbs JP, Fritts TH, Tapia W, Snell HL, Tiedemann R, Caccone A, Powell JR (2004) Genetic analysis of a successful repatriation program: giant Galapagos tortoises. Proc R Soc Lond B 271:341–345CrossRefGoogle Scholar
  83. Miller GD, Hofkin BV, Snell H, Hahn A, Miller RD (2001) Avian malaria and Marek’s disease: potential threats to Galapagos penguin Spheniscus mendiculus. Mar Ornithol 29:43–46Google Scholar
  84. Palmer CE, Pyle RL (1966) The climatological setting of the Galapagos. In: Bowman RI (ed) The Galapagos, Proceedings of the Symposia G.I.S.P. University of California Press, Berkeley, pp 65–70Google Scholar
  85. Parent CE, Crespi BJ (2006) Sequential colonization and diversification of Galapagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution 60:2311–2328Google Scholar
  86. Parent CE, Caccone A, Petren K (2008) Colonization and diversification of Galapagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Phil Trans R Soc B 363:3347–3361CrossRefGoogle Scholar
  87. Parker P (2009a) A most unusual hawk: one mother and several fathers. In: de Roy T (ed) Galapagos: preserving Darwin’s legacy. David Bateman Ltd., New Zealand, pp 130–137Google Scholar
  88. Parker PG (2009b) Parasites and pathogens: threats to native birds. In: de Roy T (ed) Galapagos: preserving Darwin’s legacy. New Zealand, David Bateman Ltd, pp 177–183Google Scholar
  89. Parker PG, Whiteman NK, Miller RE (2006) Perspectives in ornithology: conservation medicine in the Galapagos Islands: partnerships among behavioral, population and veterinary scientists. Auk 123:625–638CrossRefGoogle Scholar
  90. Peck SB (1996) Origin and development of an insect fauna on a remote archipelago: the Galapagos Islands, Ecuador. In: Keast A, Miller SE (eds) The origin and evolution of Pacific Island biotas, New Guinea to Eastern Polynesia: patterns and processes. Academic Publishing, Amsterdam, pp 91–122Google Scholar
  91. Petren K, Grant BR, Grant PR (1999) A phylogeny of Darwin’s finches based on microsatellite DNA length variation. Phil Trans R Soc B 266:321–329Google Scholar
  92. Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 14:2943–2957CrossRefGoogle Scholar
  93. Porter DM (1976) Geography and dispersal of Galapagos Islands vascular plants. Nature 264:745–746CrossRefGoogle Scholar
  94. Porter D (1984) Endemism and evolution in terrestrial plants. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 85–99Google Scholar
  95. Quiroga D (2009) Galapagos, laboratorio natural de la evolucion: una aproximacion historica. In: Tapia W, Ospina P, Quiroga D, Gonzales JA, Montes C (eds) Ciencia para la sostenibilidad en Galapagos. Parque Nacional Galapagos, EcuadorGoogle Scholar
  96. Rassmann K (1997) Evolutionary age of the Galapagos iguanas predates the age of the present Galapagos Islands. Mol Phylogenet Evol 7:158–172CrossRefGoogle Scholar
  97. Riedinger M, Steinitz Kannan M, Last W, Brenner M (2002) A 6100 14-C record of El Niño activity from the Galapagos Islands. J Paleolimnol 27:1–7CrossRefGoogle Scholar
  98. Robinson G, del Pino EM (1985) El Niño in the Galapagos Islands. Charles Darwin Foundation, QuitoGoogle Scholar
  99. Roque-Albelo L (2008) Evaluating land invertebrate species: prioritizing endangered species. Galapagos report 2006–2007. Charles Darwin Foundation, Puerto Ayora, 111–117Google Scholar
  100. Santiago-Alarcon D, Whiteman NK, Ricklefs RE, Parker PG, Valkiunas G (2008) Patterns of parasite abundance and distribution in island populations of Galapagos endemic birds. J Parasitol 94:584–590Google Scholar
  101. Sato A, Tichy H, O’Huigin C, Grant PR, Grant BR, Klein J (2001a) On the origin of Darwin’s finches. Mol Biol Evol 18:299–311CrossRefGoogle Scholar
  102. Sato A, Mayer WE, Tichy H, Grant PR, Grant BR, Klein J (2001b) Evolution of Mhc class II B genes in Darwin’s finches and their closest relatives: birth of a new gene. Immunogenetics 53:792–801CrossRefGoogle Scholar
  103. Schluter D (1986) Character displacement between distantly related taxa? Finches and the bees in the Galapagos. Am Nat 127:95–102CrossRefGoogle Scholar
  104. Schluter D, Grant PR (1984) Determinants of morphological patterns in communities of Darwin’s finches. Am Nat 123:175–196CrossRefGoogle Scholar
  105. Schluter D, Price TD, Grant PR (1985) Ecological character displacement in Darwin’s finches. Science 227:1056–1059CrossRefGoogle Scholar
  106. Schmitz P, Cibois A, Landry B (2007) Molecular phylogeny and dating of an insular endemic moth radiation inferred from mitochondrial and nuclear genes: the genus Galagete (Lepidoptera: Autostichidae) of the Galapagos Islands. Mol Phylogenet Evol 45:180–192CrossRefGoogle Scholar
  107. Sequeira AS, Lanteri AA, Scataglini MA, Confalonieri VA, Farrell BD (2000) Are flightless Galapaganus weevils older than the Galapagos Islands they inhabit? Heredity 85:20–29CrossRefGoogle Scholar
  108. Shen GT, Cole JE, Lea DW, Linn LJ, McConnaughey TA, Fairbanks RG (1992) Surface ocean variability at Galapagos from 1936–1982: calibration of geochemical tracers in corals. Paleoceanography 7:563–588CrossRefGoogle Scholar
  109. Simkin T (1984) Geology of Galapagos Islands. In: Perry R (ed) Key environments: Galapagos. Pergamon Press, New York, pp 15–41Google Scholar
  110. Simkin T, Howard KA (1970) Caldera collapse in the Galapagos Islands, 1968. Science 169:429–437CrossRefGoogle Scholar
  111. Snell HL, Tye A, Causton CE, Bensted-Smith R (2002) Current status and threats to the terrestrial biodiversity of Galapagos. A biodiversity vision for the Galapagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, Galapagos, pp 30–47Google Scholar
  112. Sulloway FJ (1982) Darwin and his finches: the evolution of a legend. J Hist Biol 15:1–53CrossRefGoogle Scholar
  113. Swanson FJ, Baitis HW, Lexa J, Dymond J (1974) Geology of Santiago, Rabida and Pinzon Islands, Galapagos. Geol Soc Am Bull 85:1803–1810CrossRefGoogle Scholar
  114. Tapia W, Patry M, Snell H, Carrión V (2000) Estado actual de los vertebrados introducidos a las islas Galapagos. Fundación Natura: Informe Galapagos 1999–2000, Quito, EcuadorGoogle Scholar
  115. Trillmich F (1984) Part 2. Natural history of the Galapagos fur seal (Arctocephalus galapagoensis, Heller). In: Perry R (ed) Key environments: Galapagos. Pergamon Press, Oxford, pp 85–99Google Scholar
  116. Trillmich F (1985) Effects of the 1982/83 El Niño on Galapagos fur seals and sea lions. Not Galapagos 42:22–23Google Scholar
  117. Trillmich F, Limberger D (1985) Drastic effect of El Niño on Galapagos, Ecuador pinnipeds. Oecologia 67:19–22CrossRefGoogle Scholar
  118. Tye A (2007) The status of the endemic flora of Galapagos: the number of threatened species is increasing. Galapagos report 2006–2007. Charles Darwin Foundation, Puerto Ayora, pp 97–103Google Scholar
  119. Tye A (2008) The status of the endemic flora of Galapagos: the number of threatened species is increasing. Galapagos report 2007–2008. Charles Darwin Foundation, Puerto Ayora, pp 97–102Google Scholar
  120. Tye A, Snell HL, Peck SB, Andersen H (2002) Outstanding terrestrial features of the Galapagos Archipelago. A biodiversity vision for the Galapagos Islands. Charles Darwin Foundation and World Wildlife Fund, Puerto Ayora, Galapagos, pp 12–23Google Scholar
  121. Tye A, Atkinson R, Carrión V (2008) Increase in the number of introduced plant species in Galapagos. Galapagos report 2006–2007. Charles Darwin Foundation, Puerto Ayora, pp 133–135Google Scholar
  122. Urban FE, Cole JE, Overpeck JT (2000) Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407(6807):989–993CrossRefGoogle Scholar
  123. Valle CA (1985) Alteración de las poblaciones del cormorán no volador, el pingüino y otras aves marinas en Galapagos por efecto de El Niño 1982–83 y su subsecuente recuperación. In: Robinson G, Del Pino E (eds) El Niño en las Islas Galapagos: Evento 1982–1993. Charles Darwin Foundation, Galapagos, Ecuador, pp 245–258Google Scholar
  124. Valle CA (1994) Pepino war, 1992—is conservation just a matter for the elite? Not Galapagos 53:2Google Scholar
  125. Valle CA, Coulter MC (1987) Present status of the flightless cormorant, Galapagos penguin, and greater flamingo populations in the Galapagos Islands, Ecuador after the 1982–83 el Niño. Condor 89:276–281CrossRefGoogle Scholar
  126. Valle CA, Cruz F, Cruz JB, Merlen G, Coulter MC (1987) The impact of the 1982–1983 El Niño Southern oscillation on seabirds in the Galapagos Islands, Ecuador. J Geophys Res 92:14437–14443CrossRefGoogle Scholar
  127. Van Riper C, Van Riper SG, Goff ML, Laird M (1988) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 58:111–127CrossRefGoogle Scholar
  128. Vargas H, Snell HM (1997) The arrival of Marek’s disease to Galapagos. Not Galapagos 58:4–5Google Scholar
  129. Vargas FH, Harrison S, Rea S, Macdonald DW (2006) Biological effects of El Niño on the Galapagos penguin. Biol Conserv 127:107–114CrossRefGoogle Scholar
  130. Whiteman NK, Goodman SJ, Sinclair BJ, Walsh T, Cunningham AA, Kramer LD, Parker PG (2005) Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Galapagos Islands, Ecuador. Ibis 147:844–847CrossRefGoogle Scholar
  131. Whiteman NK, Kimball RT, Parker PG (2007) Co-phylogeography and comparative population genetics of the Galapagos Hawk and three co-occurring ectoparasite species: natural history shapes population histories within a parasite community. Mol Ecol 16:4759–4773CrossRefGoogle Scholar
  132. Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galapagos birds and diseases: invasive pathogens as threats for island species. Ecol Soc 9:5Google Scholar
  133. Williams H (1966) Geology of the Galapagos Islands. In: Bowman RI (ed) The Galapagos, Proceedings of the Symposia G.I.S.P. University of California Press, Berkeley, pp 65–70Google Scholar
  134. Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper, San FranciscoGoogle Scholar
  135. Withman JD, Smith F (2003) Rapid community change at a site in the Galapagos marine reserve. Biodivers Conserv 12:25–45CrossRefGoogle Scholar
  136. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159Google Scholar
  137. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc 6th Int Cong Genet 1:356–366Google Scholar
  138. Wyles JS, Sarich VM (1983) Are the Galapagos iguanas older than the Galapagos? Molecular evolution and colonization models for the archipelago. In: Bowman RI, Berson M, Levinton AE (eds) Patterns of evolution in Galapagos organisms. Amer. Assoc. Advanc. Sc., Pacific Div, San Francisco, pp 177–185Google Scholar
  139. Wyrtki K (1975) ‘El Niño’: the dynamic response of the Equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584CrossRefGoogle Scholar
  140. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.College of Biological and Environmental Sciences, Galapagos Academic Institute for the Arts and Sciences (GAIAS)Universidad San Francisco de QuitoQuitoEcuador

Personalised recommendations