Olivine Phosphate Cathode Materials, Reactivity and Reaction Mechanisms



Crystalline size has tremendous effect to the thermodynamics and kinetics in intercalation compounds. This includes diffusion/transport length, effective surface area for exchange current, surface energy, and interphase energy. The focus now is on Li x FePO4, where the phase changes by simple two-phase separation but with controllable miscible character by raising temperature and/or reducing crystalline size, thereby provides simple model system to rationalize thermodynamics and electrochemistry in electrode reaction. Systematic experimental results on this issue are reviewed and summarized. Negative aspects of nanoparticle including surface poisoning by air contact and its diagnosis will be also demonstrated. As an atomic-scale phenomenon, experimental verification of one-dimensional lithium diffusion in Li x FePO4 will be also demonstrated.


Neutron Diffraction Binary Phase Diagram Maximum Entropy Method Lithium Atom Coherent Scattering Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Oxidizing agent in Battery.


Spontaneous movement of some species (ions in the present case).


A promising low-cost and safe cathode materials for LIB.

Lithium-ion battery (LIB)

A rechargeable battery with highest energy density.

Miscibility gap

A compositional region where two species cannot mix.


A name of mineral Mg2SiO4 with identical structure of LiFePO4.

Phase diagram

Stable phase map as a function of composition, temperature.


  1. 1.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188CrossRefGoogle Scholar
  2. 2.
    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224CrossRefGoogle Scholar
  3. 3.
    Huang H, Yin S-C, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170CrossRefGoogle Scholar
  4. 4.
    Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRefGoogle Scholar
  5. 5.
    Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184CrossRefGoogle Scholar
  6. 6.
    Goňi A, Lezama L, Arriortua MI, Barberis GE, Rojo T (2000) J Mater Chem 10:423CrossRefGoogle Scholar
  7. 7.
    Dahn JR, McKinnon WR (1985) Phys Rev B32:3003Google Scholar
  8. 8.
    Dahn JR, McKinnon WR, Murray JJ, Haering RR, McMillan RS, Rivers-Bowerman AH (1985) Phys Rev B32:3316Google Scholar
  9. 9.
    Delmas C, Nadiri A, Soubeyroux JL (1988) Solid State Ionics 28–30:419CrossRefGoogle Scholar
  10. 10.
    Yamada A, Koizumi H, Sonoyama N, Kanno R (2005) Phase change in LixFePO4. Electrochem Solid State Lett 8:A409CrossRefGoogle Scholar
  11. 11.
    Meethong N, Huang H-YS, Carter WC, Chiang Y-M (2007) Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochem Solid State Lett 10:A134CrossRefGoogle Scholar
  12. 12.
    Wagemaker M, Borghols WJH, Mulder FM (2007) J Am Chem Soc 129:4323CrossRefGoogle Scholar
  13. 13.
    Schimmel HG, Huot J, Chapon LC, Tichelaar FD, Mulder FM (2005) J Am Chem Soc 127:14348CrossRefGoogle Scholar
  14. 14.
    Gibot P, Casa-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C (2008) Nat Mater 7:741CrossRefGoogle Scholar
  15. 15.
    Wagemaker M, Mulder FM, Van der Ven A (2009) Adv Mater 25:2703CrossRefGoogle Scholar
  16. 16.
    Meethong N, Huang H-YS, Speakman SA, Carter WC, Chiang Y-M (2007) Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv Func Mater 17:1115CrossRefGoogle Scholar
  17. 17.
    Wang L, Zhou F, Meng YS, Ceder G (2007) Phys Rev B 76:165435CrossRefGoogle Scholar
  18. 18.
    Martin JF, Yamada A, Kobayashi G, Nishimura S, Kanno R, Guyomard D, Dupre N (2008) Electrochem Solid State Lett 11:A12CrossRefGoogle Scholar
  19. 19.
    Kobayashi G, Nishimura S, Park M-S, Kanno R, Yashima M, Ida T, Yamada A (2009) Adv Func Mater 19:395CrossRefGoogle Scholar
  20. 20.
    Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Room-temperature miscibility gap in LixFePO4. Nat Mater 5:357CrossRefGoogle Scholar
  21. 21.
    Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Acta Crystallogr B49:147Google Scholar
  22. 22.
    Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Lix MPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7:A30CrossRefGoogle Scholar
  23. 23.
    Islam M, Driscoll D, Fisher C, Slater P (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085CrossRefGoogle Scholar
  24. 24.
    Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) The existence of a temperature-driven solid solution in LixFePO4 for 0<x<1. Nat Mater 4:254CrossRefGoogle Scholar
  25. 25.
    Dodd J, Yazami R, Fultz B (2006) Phase diagram of LixFePO4. Electrochem Solid State Lett 9:A151CrossRefGoogle Scholar
  26. 26.
    Ellis B, Perry LK, Ryan DH, Nazar LF (2006) Small polaron hopping in LixFePO4 solid solutions: coupled lithium-ion and electron mobility. J Am Chem Soc 128:11416CrossRefGoogle Scholar
  27. 27.
    Dodd J, Halevy I, Fultz B (2007) Valence fluctuations of 57Fe in disordered Li0.6FePO4. J Phys Chem C 111:1563CrossRefGoogle Scholar
  28. 28.
    Gull SF, Daniel GJ (1978) Image reconstruction from incomplete and noisy data. Nature 272:686CrossRefGoogle Scholar
  29. 29.
    Collins DM (1982) Electron density images from imperfect data by iterative entropy maximization. Nature 298:49CrossRefGoogle Scholar
  30. 30.
    Shikanai F (2006) Neutron powder diffraction study on the high-temperature phase of K3H(SeO4)2. Physica B 385–386:156CrossRefGoogle Scholar
  31. 31.
    Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491CrossRefGoogle Scholar
  32. 32.
    Yashima M (2003) Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8. Chem Phys Lett 380:391CrossRefGoogle Scholar
  33. 33.
    Nishimura S, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A (2008) Experimental visualization of lithium diffusion in LixFePO4. Nat Mater 7(9):707–711CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical System EngineeringThe University of TokyoTokyoJapan

Personalised recommendations