Skip to main content

Nickel-Based Battery Systems

  • Chapter
  • First Online:
Batteries for Sustainability

Abstract

Nickel batteries are rechargeable batteries that are used in a variety of applications including portable electronic devices, electric and hybrid vehicles, aeronautics and aerospace and stationary energy storage among others. They operate over a wide temperature range, have a flat discharge curve and are available in sizes ranging from small coin cells to motive power batteries. Nickel batteries are physically and electrically rugged and abuse tolerant including over charge and overdischarge.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

β-β Transformation:

The reaction of β-Ni(OH)2 on charge to form β-NiOOH.

α-γ Transformation:

The reaction of α-Ni(OH)2 on charge to form γ-NiOOH.

Ah Ampere hour:

3,600 coulombs, the quantity of current flow in 1 ampere in 1 h.

Charge reserve:

Additional capacity of the negative or positive electrode to prevent gas evolution when the cell is overcharged or overdischarged.

Electrolyte:

Electrical conducting liquid flow where charge is carried by positive and negative ions.

Flame-arresting vent:

A cell vent designed to stop burning discharge from a vent.

Ni-MH:

Nickel metal hydride cell containing a nickel hydroxide positive and a hydrogen-absorbing metal alloy negative electrode.

Plate:

Electrode construction containing the active material and a current collector.

Pocket plate electrodes:

Perforated nickel-plated steel pockets that contain the active materials in a cell with free access of electrolyte.

Self-discharge:

Loss of capacity due to the chemical instability or a reaction of an active material in an electrode with the electrolyte.

Tubular plate electrodes:

Perforated nickel-plated steel tubes used to contain the active material in a cell.

Misch metal:

Containing a mixture of hydrogen-absorbing transition metals, Mm.

Nickel cadmium fiber plate:

Batteries construction of the positive nickel battery plate that contains nickel metal fibers throughout the plate for more efficient current collection.

Sinter plate cells:

Sealed battery cells using a nickel current collector structure usually produced by heating to a temperature where powdered nickel metal particles bond together to form a porous structure sinter current collector.

Trickle charging:

The low-level current flow to maintain full charge in a battery.

Terminal:

The external connection to the positive and negative electrodes containing the active material inside the battery case.

WH:

Watt hour, energy content of a battery expressed as the product of ampere-hours times cell voltage.

Zircar:

Trademark of nonwoven ceramic separator used in some Ni-MH cells.

Bibliography

  1. Anderman M, Baker C, Cohen F (1997) Proceedings of the 32nd intersociety energy conversion conference, Honolulu, Hawaii, vol 1, p 97465 Honolulu, Hawaii

    Google Scholar 

  2. Anderson B, Ojefors L (1979) In: Thompson JF (ed) Power sources, vol 7. Academic, London, p 329

    Google Scholar 

  3. Baker C, Barekatien M (2000) Proceedings of the SAE power systems conference, San Diego, 2000

    Google Scholar 

  4. Beauchamp RL (1971) US Patent 3,573,101

    Google Scholar 

  5. Beauchamp RL (1972) US Patent 2,653,967

    Google Scholar 

  6. Beccu K (1972) US Patent 3,669,745

    Google Scholar 

  7. Buzzelli E (1978) Silver-iron battery performance characteristics. In: Proceedings of the 28th power sources symposium, Electrochemical Society, Pennington, p 160

    Google Scholar 

  8. (2004) Cadnica sealed type Nickel-Cadmium batteries engineering handbook, Sanyo Electric Company, Osaka

    Google Scholar 

  9. Casellato U, Comisso N, Mengoli G (2006) Effects of Li ions on reduction of Fe oxides in aqueous alkaline medium. Electrochemica Acta 51:5669–5681

    Article  Google Scholar 

  10. Cook J (1999) Separator-hidden talent Electric and hybrid vehicle technology

    Google Scholar 

  11. Corrigan DA, Venkatesan S, Gifford P, Holland A, Fetcenko MA, Dhar SK, Ovshinsky SR (1997) Proceedings of the 14th international electric vehicle symposium, Orlando

    Google Scholar 

  12. Corrigan DA, Knight SK (1996) J Electrochem Soc 143(5):1613

    Google Scholar 

  13. Ettel V, Ambrose J, Cushnie K, Bell JAE, Paserin V, Kalal PJ (1997) US Patent 5,700,363

    Google Scholar 

  14. Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New York

    Google Scholar 

  15. Feduska W, Rosy R (1980) An advanced technology Iron-Nickel battery for electric vehicle propulsion. In: Proceedings of the 15th IECEC, Seattle, p 1192

    Google Scholar 

  16. Fetcenko MA, Ovshinsky SR, Chao B, Reichman B (1996) US Patent 5,536,591

    Google Scholar 

  17. Fetchenko MA, Venkatesan S, Ovshinsky S (1991) Proceedings of the symposium on hydrogen storage materials, batteries and electrochemistry, Electrochemical Society, Pennington, p 141

    Google Scholar 

  18. Fleischer A (1948) J Electrochem Soc 94:289

    Article  Google Scholar 

  19. Ford FE (1994) Handbook for handling and storage of Nickel-Cadmium batteries: lessons learned, NASA Ref. Publ. 1326

    Google Scholar 

  20. Gutjahr MA, Buchner H, Beccu KD, Saufferer H (1973) In: Collins DH (ed) Power sources, vol 4. Oriel, Newcastle Upon Tyne, p 79

    Google Scholar 

  21. Halpert G (1984) J Power Sources 12:117

    Article  Google Scholar 

  22. Halpert G (1990) Proceedings of the symposium on nickel hydroxide electrodes, The Electrochemical Society, Hollywood, Oct 1989, J Electrochem Soc, Pennington, pp 3–17

    Google Scholar 

  23. Hill TE, Rosy R, Vaill RE (1978) Performance characteristics of iron nickel batteries. In: Proceedings of the 28th power sources symposium, Electrochemical Society, Pennington, p 149

    Google Scholar 

  24. Hudson R, Broglio E (1980) Development of nickel-iron battery system for electric vehicle propulsion. In: Proceedings of the 29th power sources conference, Electrochemical Society, Pennington

    Google Scholar 

  25. Ishiwa K, Ito T, Miyamoto K, Takano K, Suzuki S (1999) Evolution and extension of NiMH technology. In: 16th international seminar on primary and secondary batteries, Ft. Lauderdale

    Google Scholar 

  26. Kanagawa I (1998) 15th international seminar on primary and secondary batteries, Ft. Lauderdale

    Google Scholar 

  27. Kruger FJ (1998) 15th international seminar on primary and secondary batteries, Ft. Lauderdale

    Google Scholar 

  28. Kulin TM (1998) 33rd intersociety engineering conference on energy conversion, ICECE-98-145, Colorado Springs, 2–6 Aug 1998

    Google Scholar 

  29. Reddy TB (2011) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York

    Google Scholar 

  30. Lindstrom O (1975) In: Collins DH (ed) Power sources, vol 5. Academic, London, p 283

    Google Scholar 

  31. McBreen J (1990) The nickel oxide electrode. In: White RE, Bockris JO’M, Conway BE (eds) Modern aspect of electrochemistry, vol 21. Plenum, New York, p 29

    Google Scholar 

  32. McRae B, Nary D (1998) Proceedings of the 38th power sources conference, pp 123–126

    Google Scholar 

  33. Matsumoto I, Ogawa H, Iwaki T, Ikeyama M (1988) 16th international power sources symposium, 1988, Bournmouth, England

    Google Scholar 

  34. Mil-B-81757 (1984) Performance specifications, batteries and cells, storage, nickel cadmium, Aircraft General Specification, Crane Division, NSWC, 1 July 1984

    Google Scholar 

  35. Mishima R, Miyamura H, Sakai T, Kuriyama N, Ishikawa H, Uehara I (1993) J Alloys Compd 192:176–178

    Article  Google Scholar 

  36. Notten PHL, Hokkeling P (1991) J Electrochem Soc 138(7):1877

    Article  Google Scholar 

  37. Notten PHL, Daams JLC, Einerhand REF (1992) Ber Bunsenges Phys Chem 96:5

    Article  Google Scholar 

  38. Nickel-Cadmium batteries (2004) charge system guide, Panasonic Industrial Company, Secaucus

    Google Scholar 

  39. Ohta K, Matsuda H, Ikoma M, Morishita N, Toyoguchi Y (1996) US Patent 5,571,636

    Google Scholar 

  40. Ojefors L, Carlson L (1977) An iron-air vehicle battery. J Power Sources 2:287

    Article  Google Scholar 

  41. Oshitani M, Yufu H, Takashima K, Tsuji S, Matsumaru Y (1989) J Electrochem Soc 136:6

    Article  Google Scholar 

  42. Oshitani M, Yufu H (1989) US Patent 4,844,999

    Google Scholar 

  43. Ovshinsky SR, Dhar SK, Fetcenko MA, Young K, Reichman B, Fierro C, Koch J, Martin F, Mays W, Sommers B, Ouchi T, Zallen A, Young R (2000) 17th international seminar and exhibit on primary and secondary batteries, Ft. Lauderdale, 6–9 Mar 2000

    Google Scholar 

  44. Ovshinsky SR (1998) Materials research society fall meeting, Boston

    Google Scholar 

  45. Ovshinsky SR, Fetcenko M, Ross J (1993) Science 260:176

    Article  Google Scholar 

  46. Ovshinsky SR (1991) In: Adler D, Schwartz B, Silver M (eds) Disordered materials: science and technology. Institute for Amorphous Studies Series/Plenum Publishing Corporation, New York

    Google Scholar 

  47. Ovshinsky SR, Corrigan DA, Venkatesan S, Young R, Fierro C, Fetcenko M (1994) US Patent 5,348,822, 14 Apr 1994

    Google Scholar 

  48. Pell MB, Blossom RW (1970) US Patent 3,507,699

    Google Scholar 

  49. Picket DF, Maloy JT (1978) J Electrochem Soc 12:1026

    Article  Google Scholar 

  50. Picket DF (1974) US Patent 3,827,911

    Google Scholar 

  51. Picket DF (1975) US Patent 3,873,368

    Google Scholar 

  52. Puglisi V (2000) 17th international seminar and exhibit on primary and secondary batteries, Ft. Lauderdale 6–9 Mar 2000

    Google Scholar 

  53. Reichman B, Mays W, Fetcenko MA, Ovshinsky SR (1999) Electrochemical society proceedings, vol 97–16, Oct 1999

    Google Scholar 

  54. Salkind AJ, Venuto CJ, Falk SU (1964) The reaction at the iron alkaline electrode. J Electrochem Soc 111:493

    Article  Google Scholar 

  55. Sapru SR, Reichman B, Reger A, Ovshinsky SR (1986) US Patent 4,623,597

    Google Scholar 

  56. Singh D, Wu T, Wendling M, Bendale P, Ware J, Ritter D, Zhang L (1998) Mater Res Soc Proc 496:25–36

    Article  Google Scholar 

  57. Souza A, Carlos IA, Lopes M, Finazzi GA, de Almeida MRH (2004) Self-discharge of Fe-Ni alkaline batteries. J Power Sources 132:288–290

    Article  Google Scholar 

  58. Stempel RC, Ovshinsky WR, Gifford PR, Corrigan DA (1998) IEEC spectrum 35(11):29–34

    Google Scholar 

  59. Takagi S, Minohara T (2000) Society of automotive engineers, 2000-01-1060, Mar 2000

    Google Scholar 

  60. Tuomi D (1976) The forming process in nickel positive electrodes. J Electrochem Soc 123:1691

    Article  Google Scholar 

  61. van Beek JR, Donkersloot HC, Willems JJG (1984) Proceedings of the 14th international power sources symposium (1984), Waikola, Hawaii

    Google Scholar 

  62. Watanabe K, Koseki M, Kumagai N (1996) J Power Sources 58:23–28

    Article  Google Scholar 

  63. Weininger JL (1982) In: Gunther RG, Gross S (eds) The nickel electrode, vol 82–84. Electrochemical Society, Pennington, pp 1–19

    Google Scholar 

  64. Weizhong T, Guangfei S (1994) J Alloy Compd 203:195–198

    Article  Google Scholar 

  65. Young K, Fetcenko MA, Reichman B, Mays W, Ovshinsky SR (2000) Proceedings of the 197th electrochemical society meeting, May 2000

    Google Scholar 

  66. Yu X, Licht S (2007) Advances in Fe(VI) charge storage part I, primary alkaline super-iron batteries. J Power Sources 171:966–980

    Article  Google Scholar 

  67. Yu X, Licht S (2007) Advances in Fe(VI) charge storage part ii, reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J Power Sources 171:1010–1022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph J. Brodd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brodd, R.J. (2013). Nickel-Based Battery Systems. In: Brodd, R. (eds) Batteries for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5791-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5791-6_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5790-9

  • Online ISBN: 978-1-4614-5791-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics