Skip to main content

Direct Hydrocarbon Solid Oxide Fuel Cells

  • Chapter
  • First Online:
Fuel Cells

Abstract

Solid Oxide Fuel Cells (SOFCs) are one of the most promising technologies for future efficient conversion of the chemical energy stored in fuels to electrical energy. One of the primary advantages of SOFCs is the potential to operate with a wide variety of fuels. While H2 is the fuel of choice for most fuel cells, operation with fossil-derived and bio-derived hydrocarbon fuels would bypass the costly requirement of a new H2 infrastructure, and accelerate adoption of fuel cell technology. This is feasible as SOFCs transport oxygen anions from the air electrode (cathode) to the fuel electrode (anode). The primary barrier to the realization of fuel flexible SOFCs is the anode material set. Traditional SOFC anodes are based on Ni composites. While these are very efficient for H2 and CO fuels, Ni catalyzes graphite formation from dry hydrocarbons, leading to rapid degradation of cell performance and possible mechanical failure. This motivates the development of new anode materials and composites. The principle requirements of an anode are oxygen anion conductivity, electronic conductivity, and electrocatalytic activity toward the desired reaction. This entry reviews the primary issues in direct hydrocarbon anode development and discusses the new materials and composites that have been developed to meet this challenge.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Electrical conductivity:

Also referred to as total conductivity. This total conductivity has three components: electronic n-type (electron charge carriers), electronic p-type (electron hole charge carriers), and ionic conductivity.

Electrocatalytic reaction:

Catalyzed reaction that involves charge transfer.

Humidified fuel:

In this text, humidified fuel refers to fuel that has been passed through room temperature water and hence contains 3 mol% H2O.

OCP:

Open Circuit Potential. The potential difference measured between anode and cathode for an SOFC with an open electronic circuit. If the redox reactions occurring at the electrodes are known, the OCP can be predicted using the Nernst equation.

Overpotential:

The decrease in the maximum driving force (OCP), in a working SOFC. This is typically caused by charge transfer processes in the electrodes.

Oxygen stoichiometry:

The oxygen content of a solid oxide material. Most of the materials of interest in this study exhibit variable oxygen stoichiometry as a function of oxygen partial pressure and temperature while maintaining the cation structure.

Polarization resistance:

The electrical resistance of the electrode of an electrochemical device upon polarization.

SOFC:

Solid Oxide Fuel Cell. A fuel cell characterized as having a solid oxide electrolyte that separates the air electrode (cathode) from the fuel electrode (anode).

TEC:

Thermal Expansion Coefficient. Sometimes referred to as the coefficient of thermal expansion (CTE) and refers to the total expansion of the lattice cell as a function of temperature. For oxides with variable oxygen stoichiometry, the TEC consists of the thermal expansion and the chemical expansion. The latter is the expansion due to changes in oxygen stoichiometry. In this text it refers to the total expansion.

Bibliography

Primary Literature

  1. McIntosh S, Gorte RJ (2004) Direct hydrocarbon solid oxide fuel cells. Chem Rev 104:4845–4865

    Article  Google Scholar 

  2. Minh NQ (2004) Solid oxide fuel cell technology–features and applications. Solid State Ionics 174:271

    Article  Google Scholar 

  3. Minh NQ (1993) Ceramic fuel-cells. J Am Ceram Soc 76:563–588

    Article  Google Scholar 

  4. Steele BCH, Middleton PH, Rudkin RA (1990) Material science aspects of SOFC technology with special reference to anode development. Solid State Ionics 40–41:388

    Article  Google Scholar 

  5. Tao SW, Irvine JTS (2004) Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem Rec 4:83–95

    Article  Google Scholar 

  6. Bruce MK, van den Bossche M, McIntosh S (2008) The influence of current density on the electrocatalytic activity of oxide-based direct hydrocarbon SOFC anodes. J Electrochem Soc 155:B1202–B1209

    Article  Google Scholar 

  7. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791

    Article  Google Scholar 

  8. Jacobson AJ (2009) Materials for solid oxide fuel cells. Chem Mater 22:660

    Article  Google Scholar 

  9. Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12:1367–1391

    Article  Google Scholar 

  10. Brett DJL, Atkinson A, Brandon NP, Skinner SJ (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578

    Article  Google Scholar 

  11. He HP, Hill JM (2007) Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal, A 317:284–292

    Article  Google Scholar 

  12. Gupta GK, Hecht ES, Zhu H, Dean AM, Kee RJ (2006) Gas-phase reactions of methane and natural-gas with air and steam in non-catalytic regions of a solid-oxide fuel cell. J Power Sources 156:434–447

    Article  Google Scholar 

  13. Walters KM, Dean AM, Zhu H, Kee RJ (2003) Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas. J Power Sources 123:182–189

    Article  Google Scholar 

  14. Lin YB, Zhan ZL, Liu J, Barnett SA (2005) Direct operation of solid oxide fuel cells with methane fuel. Solid State Ionics 176:1827–1835

    Article  Google Scholar 

  15. Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649

    Article  Google Scholar 

  16. Zhan ZL, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847

    Article  Google Scholar 

  17. Bouwmeester HJM, Kruidhof H, Burggraaf AJ (1994) Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics 72:185

    Article  Google Scholar 

  18. van den Bossche M, Matthews R, Lichtenberger A, McIntosh S (2010) Insights into the fuel oxidation mechanism of La0.75Sr0.25Cr0.5Mn0.5O3-d SOFC anodes. J Electrochem Soc 157:B392–B399

    Article  Google Scholar 

  19. van den Bossche M, McIntosh S (2010) Pulse reactor studies to assess the potential of La0.75Sr0.25Cr0.5Mn0.4X0.1O3-d (X = co, fe, mn, ni, V) as direct hydrocarbon solid oxide fuel cell anodes. Chem Mater 22:5856–5865

    Article  Google Scholar 

  20. van den Bossche M, McIntosh S (2008) Rate and selectivity of methane oxidation over La0.75Sr0.25CrxMn1-xO3-d as a function of lattice oxygen stoichiometry under solid oxide fuel cell anode conditions. J Catal 255:313–323

    Article  Google Scholar 

  21. McIntosh S, Vohs JM, Gorte RJ (2003) Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons. Electrochem Solid State Lett 6:A240–A243

    Article  Google Scholar 

  22. McIntosh S, Vohs JM, Gorte RJ (2002) An examination of lanthanide additives on the performance of cu-YSZ cermet anodes. Electrochim Acta 47:3815–3821

    Article  Google Scholar 

  23. Bouwmeester HJM, Burggraaf AJ (1997) Dense ceramic membranes for oxygen separation. In: Gellings PJ, Bouwmeester HJM (eds) CRC handbook of solid state electrochemistry. CRC Press, Boca Raton

    Chapter  Google Scholar 

  24. Goldschmidt VM (1926) Geochemische verteilungsgesetze der elemente. Akad Oslo I Mat Nat 2:7

    Google Scholar 

  25. Knauth P, Tuller HL (2002) Solid-state ionics: roots, status, and future prospects. J Am Ceram Soc 85:1654–1680

    Article  Google Scholar 

  26. Oishi M, Yashiro K, Sato K, Mizusaki J, Kawada T (2008) Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (la, sr)(cr, M)O3-d (M = ti, mn and fe). J Solid State Chem 181:3177–3184

    Article  Google Scholar 

  27. McIntosh S, He HP, Lee SI, Costa-Nunes O, Krishnan VV, Vohs JM, Gorte RJ (2004) An examination of carbonaceous deposits in direct-utilization SOFC anodes. J Electrochem Soc 151:A604–A608

    Article  Google Scholar 

  28. McIntosh S, Vohs JM, Gorte RJ (2003) Role of hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs. J Electrochem Soc 150:A470–A476

    Article  Google Scholar 

  29. Coyle CA, Marina OA, Thomsen EC, Edwards DJ, Cramer CD, Coffey GW, Pederson LR (2009) Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic. J Power Sources 193:730–738

    Article  Google Scholar 

  30. Marina OA, Coyle CA, Thomsen EC, Edwards DJ, Coffey GW, Pederson LR (2010) Degradation mechanisms of SOFC anodes in coal gas containing phosphorus. Solid State Ionics 181:430–440

    Article  Google Scholar 

  31. Marina OA, Pederson LR, Thomsen EC, Coyle CA, Yoon KJ (2010) Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas. J Power Sources 195:7033–7037

    Article  Google Scholar 

  32. Gorte RJ, Park S, Vohs JM, Wang C (2000) Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv Mater 12:1465–1469

    Article  Google Scholar 

  33. Vohs JM, Gorte RJ (2009) High-performance SOFC cathodes prepared by infiltration. Adv Mater 21(9):943–956

    Article  Google Scholar 

  34. Kim G, Lee S, Shin JY, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2009) Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem Solid State Lett 12:B48–B52

    Article  Google Scholar 

  35. Lee S, Kim G, Vohs JM, Gorte RJ (2008) SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J Electrochem Soc 155:B1179–B1183

    Article  Google Scholar 

  36. Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148:A693–A695

    Article  Google Scholar 

  37. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94

    Article  Google Scholar 

  38. Jung S, Lu C, He H, Ahn K, Gorte RJ, Vohs JM (2006) Influence of composition and cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes. J Power Sources 154:42–50

    Article  Google Scholar 

  39. Gross MD, Vohs JM, Gorte RJ (2007) An examination of SOFC anode functional layers based on ceria in YSZ. J Electrochem Soc 154:B694–B699

    Article  Google Scholar 

  40. Jiang SP, Chan SH (2004) A review of anode materials development in solid oxide fuel cells. J Mater Sci 39:4405–4439

    Article  Google Scholar 

  41. Lu C, Worrell WL, Vohs JM, Gorte RJ (2003) A comparison of cu-ceria-SDC and au-ceria-SDC composites for SOFC anodes. J Electrochem Soc 150:A1357–A1359

    Article  Google Scholar 

  42. Park S, Gorte RJ, Vohs JM (2001) Tape cast solid-oxide fuel cells for the direct oxidation of hydrocarbons. J Electrochem Soc 148:A443–A447

    Article  Google Scholar 

  43. Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265

    Article  Google Scholar 

  44. Kim T, Liu G, Boaro M, Lee S, Vohs JM, Gorte RJ, Al-Madhi OH, Dabbousi BO (2006) A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155:231–238

    Article  Google Scholar 

  45. Kim H, Vohs JM, Gorte RJ (2001) Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell. Chem Commun 22:2334–2335

    Article  Google Scholar 

  46. He H, Gorte RJ, Vohs JM (2005) Highly sulfur tolerant cu-ceria anodes for SOFCs. Electrochem Solid State Lett 8:A279–A280

    Article  Google Scholar 

  47. Rasmussen JFB, Hagen A (2009) The effect of H2S on the performance of Ni–YSZ anodes in solid oxide fuel cells. J Power Sources 191:534–541

    Article  Google Scholar 

  48. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu-ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250

    Article  Google Scholar 

  49. Lee S, Vohs JM, Gorte RJ (2004) A study of SOFC anodes based on cu-ni and cu-co bimetallics in CeO2-YSZ. J Electrochem Soc 151:A1319–A1323

    Article  Google Scholar 

  50. Ahn K, He H, Vohs JM, Gorte RJ (2005) Enhanced thermal stability of SOFC anodes made with CeO2-ZrO2 solutions. Electrochem Solid State Lett 8:A414–A417

    Article  Google Scholar 

  51. Nakamura T, Petzow G, Gauckler LJ (1979) Stability of the perovskite phase LaBO3 (B = V, cr, mn, fe, co, ni) in reducing atmosphere I. experimental results. Mater Res Bull 14:649

    Article  Google Scholar 

  52. Tao SW, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323

    Article  Google Scholar 

  53. Lu XC, Zhu JH (2007) Cu(pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3-d anodes for direct utilization of methane in SOFC. Solid State Ionics 178:1467–1475

    Article  Google Scholar 

  54. Doshi R, Alcock CB, Gunasekaran N, Carberry JJ (1993) Carbon-monoxide and methane oxidation properties of oxide solid-solution catalysts. J Catal 140:557–563

    Article  Google Scholar 

  55. Sfeir J, Buffat PA, Mockli P, Xanthopoulos N, Vasquez R, Mathieu HJ, Van herle J, Thampi KR (2001) Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. J Catal 202:229–244

    Article  Google Scholar 

  56. Danilovic N, Vincent A, Luo J, Chuang KT, Hui R, Sanger AR (2009) Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.25Cr0.5X0.5O3-d (X = ti, mn, fe, co). Chem Mater 22(3):957–965

    Article  Google Scholar 

  57. Primdahl S, Hansen JR, Grahl-Madsen L, Larsen PH (2001) Sr-doped LaCrO3 anode for solid oxide fuel cells. J Electrochem Soc 148:A74–A81

    Article  Google Scholar 

  58. Vernoux P, Djurado E, Guillodo M (2001) Catalytic and electrochemical properties of doped lanthanum chromites as new anode materials for solid oxide fuel cells. J Am Ceram Soc 84:2289–2295

    Article  Google Scholar 

  59. Kobsiriphat W, Madsen BD, Wang Y, Marks LD, Barnett SA (2009) La0.8Sr0.2Cr1-xRuxO3-d-Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance. Solid State Ionics 180:257

    Article  Google Scholar 

  60. Tao SW, Irvine JTS (2004) Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-d in relation to its potential as a solid oxide fuel cell anode material. Chem Mater 16:4116–4121

    Article  Google Scholar 

  61. Jardiel T, Caldes MT, Moser F, Hamon J, Gauthier G, Joubert O (2010) New SOFC electrode materials: The ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5-xNix)O3-d and (La0.75Sr0.25)(Cr0.5-xNixMn0.5)O3-d. Solid State Ionics 181:894

    Article  Google Scholar 

  62. Pudmich G, Boukamp BA, Gonzalez-Cuenca M, Jungen W, Zipprich W, Tietz F (2000) Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid State Ionics 135:433

    Article  Google Scholar 

  63. Hui S, Petric A (2001) Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. Solid State Ionics 143:275–283

    Article  Google Scholar 

  64. Tao SW, Irvine JTS (2004) Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-d, a redox-stable, efficient perovskite anode for SOFCs. J Electrochem Soc 151:A252–A259

    Article  Google Scholar 

  65. Tao SW, Irvine JTS, Plint SM (2006) Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O3-d. J Phys Chem B 110:21771–21776

    Article  Google Scholar 

  66. Zha SW, Tsang P, Cheng Z, Liu ML (2005) Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1-xMnxO3 under anodic conditions. J Solid State Chem 178:1844–1850

    Article  Google Scholar 

  67. Kharton VV, Tsipis EV, Marozau IP, Viskup AP, Frade JR, Irvine JTS (2007) Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)(0.95)Cr0.5Mn0.5O3-delta. Solid State Ionics 178:101–113

    Article  Google Scholar 

  68. Plint SM, Connor PA, Tao S, Irvine JTS (2006) Electronic transport in the novel SOFC anode material La1-xSrxCr0.5Mn0.5O3 +/-d. Solid State Ionics 177:2005–2008

    Article  Google Scholar 

  69. Wan J, Zhu JH, Goodenough JB (2006) La0.75Sr0.25Cr0.5Mn0.5O3-d + Cu composite anode running on H2 and CH4 fuels. Solid State Ionics 177:1211–1217

    Article  Google Scholar 

  70. Fonseca FC, Muccillo ENS, Muccillo R, de Florio DZ (2008) Synthesis and electrical characterization of the ceramic anode La1-xSrxMn0.5Cr0.5O3. J Electrochem Soc 155:B483–B487

    Article  Google Scholar 

  71. Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem Solid State Lett 11:B16–B19

    Article  Google Scholar 

  72. Jiang SP, Liu L, Khuong POB, Ping WB, Li H, Pu H (2008) Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. J Power Sources 176:82–89

    Article  Google Scholar 

  73. Sfeir J (2003) LaCrO3-based anodes: stability considerations. J Power Sources 118:276–285

    Article  Google Scholar 

  74. Liu J, Madsen BD, Ji ZQ, Barnett SA (2002) A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem Solid State Lett 5:A122–A124

    Article  Google Scholar 

  75. Yamazoe N, Teraoka Y (1990) Oxidation catalysis of perovskites --- relationships to bulk structure and composition (valency, defect, etc.). Catal Today 8:175

    Article  Google Scholar 

  76. Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales JC, Savaniu C, Nunez P, Irvine JTS (2006) Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-d at lanthanum gallate electrolytes. Chem Mater 18:1001–1006

    Article  Google Scholar 

  77. Tao S, Irvine JTS (2006) Phase transition in perovskite oxide La0.75Sr0.25Cr0.5Mn0.5O3-d observed by in situ high-temperature neutron powder diffraction. Chem Mater 18:5453

    Article  Google Scholar 

  78. Cheng Z, Zha S, Aguilar L, Liu M (2005) Chemical, electrical, and thermal properties of strontium doped lanthanum vanadate. Solid State Ionics 176:1921–1928

    Article  Google Scholar 

  79. Chen XJ, Liu QL, Chan SH, Brandon NP, Khor KA (2007) Sulfur tolerance and hydrocarbon stability of La0.75Sr0.25Cr0.5Mn0.5O3/Gd0.2Ce0.8O1.9 composite anode under anodic polarization. J Electrochem Soc 154:B1206–B1210

    Article  Google Scholar 

  80. Bernuy-Lopez C, Allix M, Bridges CA, Claridge JB, Rosseinsky MJ (2007) Sr2MgMoO6-d: structure, phase stability, and cation site order control of reduction. Chem Mater 19:1035–1043

    Article  Google Scholar 

  81. Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254–257

    Article  Google Scholar 

  82. Otsuka K, Wang Y, Sunada E, Yamanaka I (1998) Direct partial oxidation of methane to synthesis gas by cerium oxide. J Catal 175:152–160

    Article  Google Scholar 

  83. Huang YH, Dass RI, Denyszyn JC, Goodenough JB (2006) Synthesis and characterization of Sr2MgMoO6-d – an anode material for the solid oxide fuel cell. J Electrochem Soc 153:A1266–A1272

    Article  Google Scholar 

  84. Marrero-López D, Peña-Martínez J, Ruiz-Morales JC, Gabás M, Núñez P, Aranda MAG, Ramos-Barrado JR (2009) Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6 – [delta] as SOFC anode. Solid State Ionics 180:1672

    Article  Google Scholar 

  85. Vasala S, Lehtimaki M, Haw SC, Chen JM, Liu RS, Yamauchi H, Karppinen M (2010) Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6-d SOFC-anode material. Solid State Ionics 181:754–759

    Article  Google Scholar 

  86. Matsuda Y, Karppinen M, Yamazaki Y, Yamauchi H (2009) Oxygen-vacancy concentration in A2MgMoO6-d double-perovskite oxides. J Solid State Chem 182:1713–1716

    Article  Google Scholar 

  87. Huang Y, Liang G, Croft M, Lehtimaki M, Karppinen M, Goodenough JB (2009) Double-perovskite anode materials Sr2MMoO6 (M = co, ni) for solid oxide fuel cells. Chem Mater 21:2319–2326

    Article  Google Scholar 

  88. Vasala S, Lehtimäki M, Huang YH, Yamauchi H, Goodenough JB, Karppinen M (2010) Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6-d (M = Mg, mn, fe, co, ni, zn). J Solid State Chem 183:1007

    Article  Google Scholar 

  89. Marrero-Lopez D, Pena-Martinez J, Ruiz-Morales JC, Martin-Sedeno MC, Nunez P (2009) High temperature phase transition in SOFC anodes based on Sr2MgMoO6-delta. J Solid State Chem 182:1027–1034

    Article  Google Scholar 

  90. Marrero-Lopez D, Pena-Martinez J, Ruiz-Morales JC, Perez-Coll D, Aranda MAG, Nunez P (2008) Synthesis, phase stability and electrical conductivity of Sr2MgMoO6-d anode. Mater Res Bull 43:2441–2450

    Article  Google Scholar 

  91. Moos R, Hardtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400 °C. J Am Ceram Soc 80:2549–2562

    Article  Google Scholar 

  92. Hui S, Petric A (2002) Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J Eur Ceram Soc 22:1673–1681

    Article  Google Scholar 

  93. Kolodiazhnyi T, Petric A (2005) The applicability of sr-deficient n-type SrTiO3 for SOFC anodes. J Electroceram 15:5–11

    Article  Google Scholar 

  94. Lu XC, Zhu JH, Yang Z, Xia G, Stevenson JW (2009) Pd-impregnated SYT/LDC composite as sulfur-tolerant anode for solid oxide fuel cells. J Power Sources 192:381–384

    Article  Google Scholar 

  95. Moos R, Bischoff T, Menesklou W, Hardtl K (1997) Solubility of lanthanum in strontium titanate in oxygen-rich atmospheres. J Mater Sci 32:4247–4252

    Article  Google Scholar 

  96. Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149:21–28

    Article  Google Scholar 

  97. Huang X, Zhao H, Shen W, Qiu W, Wu W (2006) Effect of fabrication parameters on the electrical conductivity of YxSr1 − xTiO3 for anode materials. J Phys Chem Solids 67:2609–2613

    Article  Google Scholar 

  98. Balachandran U, Eror NG (1982) Electrical conductivity in lanthanum-doped strontium titanate. J Electrochem Soc 129:1021–1026

    Article  Google Scholar 

  99. Flandermeyer BF, Agarwal AK, Anderson HU, Nasrallah MM (1984) Oxidation-reduction behaviour of la-doped SrTiO3. J Mater Sci 19:2593–2598

    Article  Google Scholar 

  100. Battle PD, Bennett JE, Sloan J, Tilley RJD, Vente JF (2000) A-site cation-vacancy ordering in Sr1 − 3x/2LaxTiO3: A study by HRTEM. J Solid State Chem 149:360–369

    Article  Google Scholar 

  101. Meyer R, Waser R, Helmbold J, Borchardt G (2002) Cationic surface segregation in donor-doped SrTiO3 under oxidizing conditions. J Electroceram 9:101–110

    Article  Google Scholar 

  102. Fu QX, Mi SB, Wessel E, Tietz F (2008) Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3. J Eur Ceram Soc 28:811–820

    Article  Google Scholar 

  103. Slater PR, Fagg DP, Irvine JTS (1997) Synthesis and electrical characterisation of doped perovskite titanates as potentialanode materials for solid oxide fuel cells. J Mater Chem 7:2495–2498

    Article  Google Scholar 

  104. Blennow P, Hagen A, Hansen KK, Wallenberg LR, Mogensen M (2008) Defect and electrical transport properties of nb-doped SrTiO3. Solid State Ionics 179:2047–2058

    Article  Google Scholar 

  105. Blennow P, Hansen KK, Wallenberg LR, Mogensen M (2009) Electrochemical characterization and redox behavior of nb-doped SrTiO3. Solid State Ionics 180:63–70

    Article  Google Scholar 

  106. Blennow P, Hansen KK, Wallenberg LR, Mogensen M (2007) Synthesis of nb-doped SrTiO3 by a modified glycine-nitrate process. J Eur Ceram Soc 27:3609–3612

    Article  Google Scholar 

  107. Hashimoto S, Poulsen FW, Mogensen M (2007) Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature. J Alloy Compd 439:232–236

    Article  Google Scholar 

  108. Tufte ON, Chapman PW (1967) Electron mobility in semiconducting strontium titanate. Phys Rev 155:796

    Article  Google Scholar 

  109. Irvine J, Slater P, Wright P (1996) Synthesis and electrical characterisation of the perovskite niobate-titanates, Sr1 − x/2Ti1 − xNbxO3 − δ. Ionics 2:213–216

    Article  Google Scholar 

  110. Blennow P, Hansen KK, Reine Wallenberg L, Mogensen M (2006) Effects of Sr/Ti-ratio in SrTiO3-based SOFC anodes investigated by the use of cone-shaped electrodes. Electrochim Acta 52:1651–1661

    Article  Google Scholar 

  111. Hui S, Petric A (2002) Electrical conductivity of yttrium-doped SrTiO3: Influence of transition metal additives. Mater Res Bull 37:1215–1231

    Article  Google Scholar 

  112. Zhao H, Gao F, Li X, Zhang C, Zhao Y (2009) Electrical properties of yttrium doped strontium titanate with A-site deficiency as potential anode materials for solid oxide fuel cells. Solid State Ionics 180:193

    Article  Google Scholar 

  113. Fu Q, Tietz F, Sebold D, Tao S, Irvine JTS (2007) An efficient ceramic-based anode for solid oxide fuel cells. J Power Sources 171:663–669

    Article  Google Scholar 

  114. Yang LM, De Jonghe LC, Jacobsen CP, Visco SJ (2007) B-site doping and catalytic activity of sr(Y)TiO3. J Electrochem Soc 154:B949–B955

    Article  Google Scholar 

  115. Vincent A, Luo J, Chuang KT, Sanger AR (2010) Effect of ba doping on performance of LST as anode in solid oxide fuel cells. J Power Sources 195:769

    Article  Google Scholar 

  116. Wagner SF, Warnke C, Menesklou W, Argirusis C, Damjanovic T, Borchardt G, Ivers-Tiffée E (2006) Enhancement of oxygen surface kinetics of SrTiO3 by alkaline earth metal oxides. Solid State Ionics 177:1607

    Article  Google Scholar 

  117. Sun X, Wang S, Wang Z, Qian J, Wen T, Huang F (2009) Evaluation of Sr0.88Y0.08TiO3–CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel. J Power Sources 187:85–89

    Article  Google Scholar 

  118. Sun X, Wang S, Wang Z, Ye X, Wen T, Huang F (2008) Anode performance of LST–xCeO2 for solid oxide fuel cells. J Power Sources 183:114–117

    Article  Google Scholar 

  119. Fu QX, Tietz F, Stover D (2006) La0.4Sr0.6Ti1-xMnxO3-d perovskites as anode materials for solid oxide fuel cells. J Electrochem Soc 153:D74–D83

    Article  Google Scholar 

  120. Ruiz-Morales J, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine JTS (2006) Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439:568–571

    Article  Google Scholar 

  121. Cheng Z, Zha S, Liu M (2006) Stability of materials as candidates for sulfur-resistant anodes of solid oxide fuel cells. J Electrochem Soc 153:A1302–A1309

    Article  Google Scholar 

  122. Mukundan R, Brosha EL, Garzon FH (2004) Sulfur tolerant anodes for SOFCs. Electrochem Solid State Lett 7:A5–A7

    Article  Google Scholar 

  123. Zha SW, Cheng Z, Liu ML (2005) A sulfur-tolerant anode material for SOFCs Gd2Ti1.4Mo0.6O7. Electrochem Solid State Lett 8:A406–A408

    Article  Google Scholar 

  124. Porat O, Heremans C, Tuller HL (1997) Stability and mixed ionic electronic conduction in Gd2(Ti1-xMox)2O7 under anodic conditions. Solid State Ionics 94:75

    Article  Google Scholar 

  125. Sprague JJ, Tuller HL (1999) Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate. J Eur Ceram Soc 19:803–806

    Article  Google Scholar 

  126. Deng ZQ, Niu HJ, Kuang XJ, Allix M, Claridge JB, Rosseinsky MJ (2008) Highly conducting redox stable pyrochlore oxides. Chem Mater 20:6911–6916

    Article  Google Scholar 

  127. Kramer S, Spears M, Tuller HL (1994) Conduction in titanate pyrochlores – role of dopants. Solid State Ionics 72:59–66

    Article  Google Scholar 

  128. Naito H, Arashi H (1992) Electrical-properties of ZrO2-TiO2-Y2O3 system. Solid State Ionics 53:436–441

    Article  Google Scholar 

  129. Kaiser A, Feighery A, Fagg D, Irvine J (1998) Electrical characterization of highly titania doped YSZ. Ionics 4:215

    Article  Google Scholar 

  130. Tao S, Irvine JTS (2002) Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials. J Solid State Chem 165:12–18

    Article  Google Scholar 

  131. Tao SW, Irvine JTS (2004) Investigation of the mixed conducting oxide ScYZT as a potential SOFC anode material. J Electrochem Soc 151:A497–A503

    Article  Google Scholar 

  132. Slater PR, Irvine JTS (1999) Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells: synthesis and electrical characterisation. Solid State Ionics 120:125–134

    Article  Google Scholar 

  133. Slater PR, Irvine JTS (1999) Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/Sr/Ca/La)0.6MxNb1-xO3-d (M = mg, ni, mn, cr, fe, in, sn): evaluation as potential anode materials for solid oxide fuel cells. Solid State Ionics 124:61–72

    Article  Google Scholar 

  134. Kaiser A, Bradley JL, Slater PR, Irvine JTS (2000) Tetragonal tungsten bronze type phases (Sr1-xBax)0.6Ti0.2Nb0.8O3-d: material characterisation and performance as SOFC anodes. Solid State Ionics 135:519–524

    Article  Google Scholar 

  135. Aguilar L, Zha S, Cheng Z, Winnick J, Liu M (2004) A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels. J Power Sources 135:17–24

    Article  Google Scholar 

Books and Reviews

  • Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27

    Article  Google Scholar 

  • Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Annu Rev Mater Res 33:183–213

    Article  Google Scholar 

  • Fergus JW (2006) Oxide anode materials for solid oxide fuel cells. Solid State Ionics 177:1529

    Article  Google Scholar 

  • Fleig J (2003) Solid oxide fuel cell cathodes: polarization mechanisms and modeling of the electrochemical performance. Annu Rev Mater Res 33:361–382

    Article  Google Scholar 

  • Gellings PJ, Bouwmeester HJM (2000) Solid state aspects of oxidation catalysis. Catal Today 58:1–53

    Article  Google Scholar 

  • Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33:91–128

    Article  Google Scholar 

  • Goodenough JB, Huang Y (2007) Alternative anode materials for solid oxide fuel cells. J Power Sources 173:1

    Article  Google Scholar 

  • Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168:289

    Article  Google Scholar 

  • Gorte RJ, Vohs JM (2009) Nanostructured anodes for solid oxide fuel cells. Curr Opin Colloid Interface Sci 14:236–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven McIntosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

van den Bossche, M., McIntosh, S. (2013). Direct Hydrocarbon Solid Oxide Fuel Cells. In: Kreuer, KD. (eds) Fuel Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5785-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5785-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5784-8

  • Online ISBN: 978-1-4614-5785-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics