Skip to main content

Emission Processes

  • Chapter
  • First Online:
Cosmic Electrodynamics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

  • 1811 Accesses

Abstract

A classical problem of calculating the electromagnetic emission produced by a charge (or a group of charges) moving in the vacuum is formulated in terms of computing the Poynting vector flux through a closed infinitely distant surface surrounding the radiation source (Melrose 1980;Rybicki and Lightman 1986; Ginzburg 1987;Nagirner 2007b). In contrast, computing the emission from a plasma, which is an anisotropic, dispersive, and absorbing matter, is distinctly different from the classical vacuum problem. In particular, unlike the vacuum case, the polarization vectors of the eigenmodes are not arbitrary any longer, while set up by the plasma dispersion (see Chap.3). Then, the concept of the nonzero energy flux through an infinitely distant surface can only work in case of truly nonabsorbing matter, which is strictly speaking not the case for real media including astrophysical plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the adopted constancy of the particle velocity implies that the particle moves in the given field infinitely long so the entire radiated energy is proportionally infinite.

  2. 2.

    Formally, the perturbation theory is applicable at high frequencies, where the radiation intensity is exponentially small; see below. But it is not helpful even there since, within the perturbation theory, the exponentially small emission is undistinguishable from zero emission level.

References

  • F. Aharonian et al., Discovery of two candidate pulsar wind nebulae in very-high-energy gamma rays. A&A 472, 489–495 (2007)

    Article  ADS  Google Scholar 

  • V.A. Bazylev, N.K. Zhevago,Emission from Fast Particles in Matter and in External Fields [in Russian] (Izdatelstvo Nauka, Moscow, 1987)

    Google Scholar 

  • V.Y. Eidman. Soviet Phys.-JETP7, 91 (1958)

    Google Scholar 

  • V.Y. Eidman. Soviet Phys.-JETP 9, 947 (1959)

    Google Scholar 

  • G.D. Fleishman, Generation of emissions by fast particles in stochastic media. ArXiv Astrophysics e-prints, astro-ph/0510317 (2005)

    Google Scholar 

  • G.D. Fleishman, Diffusive synchrotron radiation from relativistic shocks in gamma-ray burst sources. ApJ 638, 348–353 (2006)

    Article  ADS  Google Scholar 

  • G.D. Fleishman,Stokhasticheskaya Teoriya Izlucheniya [in Russian] (IKI, Moscow–Izhevsk, 2008)

    Google Scholar 

  • G.D. Fleishman, E.P. Kontar, Sub-THz radiation mechanisms in solar flares. ApJ 709, L127–L132 (2010)

    Article  ADS  Google Scholar 

  • V.L. Ginzburg,Theoretical Physics and Astrophysics, 3rd revised and enlarged edn. [in Russian] (Izdatel Nauka, Moscow, 1987)

    Google Scholar 

  • V.L. Ginzburg, S.I. Syrovatskii, Cosmic magnetobremsstrahlung (synchrotron radiation). ARA&A 3, 297–+ (1965)

    Google Scholar 

  • V.L. Ginzburg, V.N. Tsytovich,Transition Radiation and Transition Scattering (Hilger, Bristol, 1990)

    Google Scholar 

  • S. Jester, H.J. Röser, K. Meisenheimer, R. Perley, The radio-ultraviolet spectral energy distribution of the jet in 3C 273. A&A 431, 477–502 (2005)

    Article  ADS  Google Scholar 

  • P. Kaufmann, G. Trottet, C.G. Giménez de Castro, J.P. Raulin, S. Krucker, A.Y. Shih, H. Levato, Sub-terahertz, microwaves and high energy emissions during the 6 December 2006 Flare, at 18:40 UT. Solar Phys. 255, 131–142 (2009)

    Article  ADS  Google Scholar 

  • W.C. Keel, The optical continua of extragalactic radio jets. ApJ 329, 532–550 (1988)

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, The classical theory of fields,Course of Theoretical Physics - Pergamon International Library of Science, Technology, Engineering and Social Studies, 3rd revised, English edn. (Pergamon Press, Oxford, 1971)

    Google Scholar 

  • H.L. Marshall, B.P. Miller, D.S. Davis, E.S. Perlman, M. Wise, C.R. Canizares, D.E. Harris, A high-resolution X-ray image of the Jet in M87. ApJ 564, 683–687 (2002)

    Article  ADS  Google Scholar 

  • D.B. Melrose, The emission and absorption of waves by charged particles in magnetized plasmas. Astrophys. Space. Sci. 2, 171–235 (1968)

    Article  MathSciNet  ADS  Google Scholar 

  • D.B. Melrose,Plasma astrohysics. Nonthermal processes in diffuse magnetized plasmas - vol.1: The emission, absorption and transfer of waves in plasmas; vol.2: Astrophysical applications (Gordon and Breach, New York, 1980)

    Google Scholar 

  • A.B. Migdal, Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev.103, 1811–1820 (1956)

    Article  ADS  MATH  Google Scholar 

  • D.I. Nagirner, Radiatsionnye Mekhanizmy v Astrofizike [in Russian] (SPb University, St. Petersburg, 2007b)

    Google Scholar 

  • I.A. Nikolaev, V.N. Tsytovich, The power law spectra of relativistic electrons in a plasma in a random magnetic field. Phys. Scripta 20, 665–668 (1979)

    Article  ADS  Google Scholar 

  • G.M. Nita, D.E. Gary, G.D. Fleishman, Spatial evidence for transition radiation in a solar radio burst. ApJ 629, L65–L68 (2005)

    Article  ADS  Google Scholar 

  • E.S. Perlman, J.A. Biretta, W.B. Sparks, F.D. Macchetto, J.P. Leahy, The optical-near-infrared spectrum of the M87 Jet from Hubble space telescope observations. ApJ 551, 206–222 (2001)

    Article  ADS  Google Scholar 

  • K.Y. Platonov, G.D. Fleishman, Transition radiation in media with random inhomogeneities. Uspekhi Fizicheskikh Nauk 45, 235–291 (2002)

    Article  Google Scholar 

  • R. Ramaty, Gyrosynchrotron emission and absorption in a magnetoactive plasma. ApJ 158, 753 (1969)

    Article  ADS  Google Scholar 

  • Y. Rephaeli, Comptonization of the cosmic microwave background: the Sunyaev-Zeldovich effect. ARA&A 33, 541–580 (1995)

    Article  ADS  Google Scholar 

  • G.H. Rieke, W.Z. Wisniewski, M.J. Lebofsky, Abrupt cutoffs in the optical-infrared spectra of nonthermal sources. ApJ 263, 73–78 (1982)

    Article  ADS  Google Scholar 

  • A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic fields of galaxies. Astrophysics and Space Science Library, vol. 133 (Kluwer, Dordrecht, 1988)

    Google Scholar 

  • G.B. Rybicki, A.P. Lightman,Radiative Processes in Astrophysics (Wiley, New York, 1986)

    Google Scholar 

  • M.L. Ter-Mikhaelyan, Reviews of topical problems: high energy electromagnetic processes in amorphous and inhomogeneous media. Physics Uspekhi 46, 1231–1252 (2003)

    Article  ADS  Google Scholar 

  • I.N. Toptygin, G.D. Fleishman, A role of cosmic rays in generation of radio and optical radiation by plasma mechanics. Astrophys. Space. Sci. 132, 213–248 (1987)

    Article  ADS  MATH  Google Scholar 

  • I.N. Toptygin, G.D. Fleishman, Methodological notes: eigenmode generation by a given current in anisotropic and gyrotropic media. Physics Uspekhi 51, 363–374 (2008)

    Article  ADS  Google Scholar 

  • B.A. Trubnikov, Plasma radiation in a magnetic field. Soviet Phys. Dokl.3, 136 (1958)

    Google Scholar 

  • C.Z. Waters, S.E. Zepf, Ultraviolet hubble space telescope observations of the Jet in M87. ApJ 624, 656–660 (2005)

    Article  ADS  Google Scholar 

  • K.C. Westfold, The polarization of synchrotron radiation. ApJ 130, 241 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Y.B. Zeldovich, R.A. Sunyaev, The interaction of matter and radiation in a hot-model universe. Astrophys. Space. Sci. 4, 301–316 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Emission Processes. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics