Skip to main content

Wave–Particle and Wave–Wave Interactions

  • Chapter
  • First Online:
Cosmic Electrodynamics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

  • 1822 Accesses

Abstract

In Chap. 3 we have discussed how plasma responds to an external (weak) electromagnetic perturbation, which results in a specific wave dispersion and damping. This damping is linear, i.e., proportional to the wave amplitude and there is no change in the plasma distribution function other than small oscillations proportional to the wave amplitude. Apparently, this treatment has a limited applicability: it can only be valid until the wave amplitude is small enough to keep all nonlinear effects negligible. In contrast, a large-amplitude wave will definitely affect the plasma distribution, while in an ensemble of waves different waves will interact with each other nonlinearly, resulting, e.g., in wave spectrum modification and new mode generation. Processes of the first kind are called wave–particle interactions, while of the second kind—wave–wave interactions. Below we consider some essentials of these interactions most relevant within the context considered in this textbook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation (4.10) can be obtained as a limiting case B → 0 of Eq. (3.60), which is a complicated task. Straightforward derivation based on the kinetic equation of a free plasma is much easier.

References

  • A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics. Volume 1-Linear Theory, Volume 2-Non-Linear Theory and Fluctuations (Pergamon Press, Oxford, 1975)

    Google Scholar 

  • A.I. Akhiezer, Y.B. Fainberg, Dokl. Akad. Nauk. SSSR 69, 555 (1949)

    MATH  Google Scholar 

  • A.I. Akhiezer, Y.B. Fainberg, Uspekhi Fiz. Nauk44, 321 (1951)

    Google Scholar 

  • D. Bohm, E.P. Gross, Theory of plasma oscillations. A. Origin of medium-like behavior. Phys. Rev. 75, 1851–1864 (1949a)

    MATH  Google Scholar 

  • D. Bohm, E.P. Gross, Theory of plasma oscillations. B. Excitation and damping of oscillations. Phys. Rev.75, 1864–1876 (1949b)

    MATH  Google Scholar 

  • O. Buneman, Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett. 1, 8–9 (1958)

    Article  ADS  Google Scholar 

  • V.B. Korsakov, G.D. Fleishman, Periodic and irregular modes of the nonlinear plasma radio emission mechanism. Radiophys. Quantum Electron. 41, 28–38 (1998)

    Article  ADS  Google Scholar 

  • A.A. Kuznetsov, V.G. Vlasov, Kinetic simulation of the electron-cyclotron maser instability: effect of a finite source size. arXiv eprint 1202.0926. A&A vol. 539, pp. A141 (2012). doi 10.1051/0004-6361/201118716. http://adsabs.harvard.edu/abs/2012A%26A...539A.141K. Provided by the SAO/NASA Astrophysics Data System

  • E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981)

    Google Scholar 

  • D.B. Melrose,Plasma astrohysics. Nonthermal processes in diffuse magnetized plasmas - vol.1: The emission, absorption and transfer of waves in plasmas; vol.2: Astrophysical applications (Gordon and Breach, New York, 1980)

    Google Scholar 

  • V.V. Pustovalov, V.P. Silin, Nelineinye processy v plazme (in Russian). Trudy FIAN61, 42 (1972)

    Google Scholar 

  • A.V. Stepanov, Determination of energetic particle sources using radio emission from solar magnetic traps. Issl. Geomagn. Aeron. and Sol. Phys. 54, 141–148 (1980)

    Google Scholar 

  • R.A. Treumann, The electron-cyclotron maser for astrophysical application. A&AR 13, 229–315 (2006)

    Article  ADS  Google Scholar 

  • V.N. Tsytovich,Nonlinear Effects in Plasma (Plenum Press, New York, 1970)

    Google Scholar 

  • V.V. Zaitsev, A.V. Stepanov, Nature of type IV solar radiation pulsations. Pulsating regime of the beam and loss-cone instabilities. Issl. Geomagn. Aeron., and Sol. Phys. 37, 11–18 (1975)

    Google Scholar 

  • V.V. Zaitsev, A.V. Stepanov, The plasma radiation of flare kernels. Solar Phys. 88, 297–313 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Wave–Particle and Wave–Wave Interactions. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics