Skip to main content

Plasma Dispersion: Linear Modes in the Plasma

  • Chapter
  • First Online:
Cosmic Electrodynamics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

  • 1858 Accesses

Abstract

Dispersion of a medium is provided by a response of the particles composing the medium to an external electromagnetic field applied to the medium. To study the dispersion quantitatively we have to derive macroscopic equations describing averaged electromagnetic fields in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This solar helium abundance is somewhat higher than the primordial abundances produced at the Big Bang nucleosynthesis, namely 76% of proton and 24% of helium by mass (roughly 7% by the number density) with only traces of heavier elements (e.g., Rowan-Robinson 2004). We note that even higher abundance of helium and heavier elements can be produced by the nucleosynthesis in star interior or due to electromagnetic separation in nonstationary processes (e.g., solar flares).

  2. 2.

    As is adopted in astronomy we use Roman numbers to indicate the atom ionization state—I for neutral atom, II for singly ionized ion, III for twice-ionized ion, etc.

  3. 3.

    Here, unlike Chap. 1, we use velocity \(\boldsymbol{v}\) as an argument of distribution function f, with normalization condition \(n_{0} =\int f{d}^{\,3}v\).

References

  • M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th dover printing, 10th gpo printing edn. (Dover, New York, 1964)

    Google Scholar 

  • A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics. Volume 1-Linear Theory, Volume 2-Non-Linear Theory and Fluctuations (Pergamon Press, Oxford, 1975)

    Google Scholar 

  • A.F. Aleksandrov, L.S. Bogdankevich, A.A. Rukhadze, in Principles of Plasma Electrodynamics (Osnovy elektrodinamiki plazmy, Moscow, Izdatel’stvo Vysshaia Shkola, 1978) Berlin and New York, Springer (Springer Series in Electrophysics. vol. 9, p. 506). Translation. Previously cited in issue 13, p. 2444, Accession no. A80-32901, vol. 9, p. 2444 (1984)

    Google Scholar 

  • H. Alfven, C.G. Fälthammar, Cosmical Electrodynamics. Fundamental Principles (Clarendon Press, Oxford, 1963)

    Google Scholar 

  • I.B. Bernstein, Waves in a plasma in a magnetic field. Phys. Rev.109, 10–21 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • M. Born, E. Wolf,Principles of Optics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  • G.A. Dulk, Radio emission from the sun and stars. ARA&A 23, 169–224 (1985)

    Article  ADS  Google Scholar 

  • E.P. Gross, Plasma oscillations in a static magnetic field. Phys. Rev. 82, 232–242 (1951)

    Article  ADS  MATH  Google Scholar 

  • E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981)

    Google Scholar 

  • D.B. Melrose,Plasma astrohysics. Nonthermal processes in diffuse magnetized plasmas - vol.1: The emission, absorption and transfer of waves in plasmas; vol.2: Astrophysical applications (Gordon and Breach, New York, 1980)

    Google Scholar 

  • M. Rowan-Robinson, Cosmology (Clarendon Press, Oxford, 2004)

    Google Scholar 

  • I.N. Toptygin, Modern Electrodynamics [in Russian] (IKI, Moscow-Izhevsk, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Plasma Dispersion: Linear Modes in the Plasma. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics