Skip to main content

Magnetohydrodynamics of the Cosmic Plasma

  • Chapter
  • First Online:
Cosmic Electrodynamics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

  • 1832 Accesses

Abstract

Table 1.1 shows that the cosmic media can have very different properties as their parameters vary within exceptionally broad ranges. In particular, the gas ionization can vary from almost zero (neutral media, e.g., clouds of cold neutral hydrogen) to almost unity (fully ionized plasma). It is worthwhile, therefore, to start with a simpler case of equation set for the neutral gas. We assume that the reader is familiar with the hydrodynamics (HD) fundamentals, so we just remind the equations and briefly discuss the meaning of the terms entering them without going into the detail too deeply. The relation of HD to the kinetic theory has been outlined in Sect. 1.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term GD is more appropriate in our case because the astrophysical media represent typically a gas (neutral or ionized) phase rather than a fluid, which would imply use of the term “hydro” (water).

  2. 2.

    It must be noted that such hydrostatic equilibrium is not necessarily stable: for example, it can be convectively unstable if the temperature gradient is large; see Chaps. 6.

  3. 3.

    The model considered here was proposed by Parker (1959) to describe the interplanetary magnetic field produced by the solar plasma flows composing the solar wind.

References

  • A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics. Volume 1-Linear Theory, Volume 2-Non-Linear Theory and Fluctuations (Pergamon Press, Oxford, 1975)

    Google Scholar 

  • M.J. Aschwanden,Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. (Springer, Berlin, 2005)

    Google Scholar 

  • V.B. Baranov, K.V. Krasnobaev, Hydrodynamic theory of a cosmic plasma [in Russian]. (Moscow Izdatel Nauka, Moscow, 1977)

    Google Scholar 

  • L. Biermann, Kometenschweife und solare Korpuskularstrahlung. Z. Astrophys. 29, 274 (1951)

    ADS  Google Scholar 

  • L. Biermann, Über den Schweif des Kometen Halley im Jahre 1910. Zeitschrift Naturforschung Teil A7, 127 (1952)

    ADS  Google Scholar 

  • J.C. Brandt,Emissions from the Sun. Introduction to the Solar Wind (W. H. Freeman, San Francisco, 1970)

    Google Scholar 

  • J.C. Brandt, S.R. Harrington, R.G. Roosen, Interplanetary gas. XIX. Observational evidence for a meridional solar-wind flow diverging from the plane of the solar equator. ApJ 184, 27–32 (1973)

    Google Scholar 

  • D.E. Gary, C.U. Keller (eds.), Solar and space weather radiophysics - current status and future developments, Astrophysics and Space Science Library, vol. 314 (Kluwer, Dordrecht, 2004)

    Google Scholar 

  • A.J. Hundhausen, Coronal Expansion and Solar Wind (Springer, Berlin, 1972)

    Book  Google Scholar 

  • R. Kippenhahn, A. Schlüter, Eine Theorie der solaren Filamente. Mit 7 Textabbildungen. Z. Astrophys.43, 36 (1957)

    Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960)

    MATH  Google Scholar 

  • L.D. Landau, E.M. Lifshitz,Hydrodynamik (Akademie-Verlag, Berlin, 1966)

    Google Scholar 

  • T.A. Lozinskaya, Supernovae and Stellar Wind in the Interstellar Medium (American Institute of Physics, New York, 1992)

    Google Scholar 

  • E. Marsch, H. Rosenbauer, R. Schwenn, K.H. Muehlhaeuser, F.M. Neubauer, Solar wind helium ions - observations of the HELIOS solar probes between 0.3 and 1 AU. Journ. Geo. Res. 87, 35–51 (1982a)

    Google Scholar 

  • E. Marsch, R. Schwenn, H. Rosenbauer, K.H. Muehlhaeuser, W. Pilipp, F.M. Neubauer, Solar wind protons - three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. Journ. Geo. Res. 87, 52–72 (1982b)

    Google Scholar 

  • E. Parker, Extension of the solar corona into interplanetary space. Journ. Geo. Res. 64, 1675–1681 (1959)

    Article  ADS  Google Scholar 

  • E.N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963)

    MATH  Google Scholar 

  • E.N. Parker,Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon Press, Oxford, Oxford University Press, New York, 1979)

    Google Scholar 

  • B.V. Somov, Plasma Astrophysics, Part I: Fundamentals and Practice (Springer, New York, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Magnetohydrodynamics of the Cosmic Plasma. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics