Skip to main content

Ultrarelativistic Component of Astrophysical Plasmas

  • Chapter
  • First Online:
Cosmic Electrodynamics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

  • 1813 Accesses

Abstract

We have already noted in many places throughout the book that the very dynamics of astrophysical plasma often results in production of an ultrarelativistic plasma component on top of nonrelativistic background plasma or drives the entire plasma to an ultrarelativistic state. A vivid example of the first option is the galactic and extragalactic (ultra-high-energy) cosmic rays (CRs), while the latter one includes ultrarelativistic pulsar winds or jets and shock waves in active galactic nuclei (AGN) and GRBs. Physics of such ultrarelativistic plasmas represents an extremely broad, highly dynamic, and rapidly developing field of the modern astrophysics, which is hardly possible to comprehensively describe within a textbook format. Nevertheless, below we attempt to present some basic ideas and selected results having in mind to (1) introduce current concepts related to the ultrarelativistic plasma components and (2) demonstrate that the general theoretical framework developed within the cosmic electrodynamics is fully applicable here as well as to traditional nonrelativistic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By now many fundamental monographs and review articles on the CR origin have been published including Hayakawa (1974), Longair (1981), Ginzburg (1987), Berezinskii et al. (1990) and Murzin (2007).

  2. 2.

    The problem of MHD wave generation by relativistics particle is under active discussion in the astrophysics context since (Wentzel 1968). More recent analytical and numerical studies on the topics are done by Bell and Lucek (2001), Bell (2004), Bykov and Toptygin (2007), Zirakashvili et al. (2008) and Bykov et al. (2011) etc.

  3. 3.

    If the shock wave propagates through warm ISM gas containing neutrals, they become ionized at the shock so the total proton number must be used in estimating the Alfvén speed.

  4. 4.

    Note that quasilinear solution for the particle and resonant self-generated turbulence distributions (Lee 1983; Lagage and Cesarsky 1983; Fedorenko and Fleishman 1988) contains a similar spatial dependence, ∼ | z |  − 1, for particles with a given energy, while here it is only valid for the particle number density. The difference originates because the quasilinear models consider saturated state of the resonant streaming instability, while here a preexisting turbulence level is postulated and further wave generation on top of it studied.

  5. 5.

    A pulsar wind with that relativistic factor is required to ensure the observed high efficiency, \(\sim 10\mbox{ \textendash }20\)%, of the pulsar spin-down luminosity into the PWN luminosity (Kennel and Coroniti 1984b).

  6. 6.

    This estimate assumes a highly collimated explosion with a jet occupying only 10 − 3 of the full solid angle; isotropic explosion would require a release of ∼ 1054 erg, which looks unrealistic for a star explosion.

References

  • M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th dover printing, 10th gpo printing edn. (Dover, New York, 1964)

    Google Scholar 

  • H. Alfvén, N. Herlofson, Cosmic radiation and radio stars. Phys. Rev.78, 616–616 (1950)

    Article  ADS  Google Scholar 

  • G.E. Allen, J.C. Houck, S.J. Sturner, Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. ApJ 683, 773–785 (2008)

    Article  ADS  Google Scholar 

  • J. Arons, Theory of pulsar winds, in ASP Conference Series 271: Neutron Stars in Supernova Remnants, p. 71 (2002)

    Google Scholar 

  • A.M. Atoyan, Radio spectrum of the crab nebula as an evidence for fast initial spin of its pulsar. A&A 346, L49–L52 (1999)

    ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS  353, 550–558 (2004)

    Article  ADS  Google Scholar 

  • A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. MNRAS 321, 433–438 (2001)

    Article  ADS  Google Scholar 

  • V.B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii,Quantum Electrodynamics, vol. 4 (Pergamon Press, Oxford, 1982)

    Google Scholar 

  • E.G. Berezhko, L.T. Ksenofontov, H.J. Völk, Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006. A&A 412, L11–L14 (2003)

    Article  ADS  Google Scholar 

  • E.G. Berezhko, G. Pühlhofer, H.J. Völk, Theory of cosmic ray and γ-ray production in the supernova remnant RX J0852.0-4622. A&A 505, 641–654 (2009)

    Google Scholar 

  • V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990)

    Google Scholar 

  • V.S. Beskin,MHD Flows in Compact Astrophysical Objects: Accretion, Winds and Jets (Springer, Berlin, 2009b)

    Google Scholar 

  • V.S. Beskin, A.V. Gurevich, Y.N. Istomin, Physics of the Pulsar Magnetosphere (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  • M.F. Bietenholz, D.A. Frail, J.J. Hester, The crab nebula’s moving wisps in radio. ApJ 560, 254–260 (2001)

    Article  ADS  Google Scholar 

  • M.F. Bietenholz, J.J. Hester, D.A. Frail, N. Bartel, The crab nebula’s wisps in radio and optical. ApJ 615, 794–804 (2004)

    Article  ADS  Google Scholar 

  • A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. MNRAS 410, 39–52 (2011)

    Article  ADS  Google Scholar 

  • A.M. Bykov, I. Toptygin, Reviews of topical problems: instabilities of a multicomponent plasma with accelerated particles and magnetic field generation in astrophysical objects. Physics Uspekhi50, 141–174 (2007)

    Article  ADS  Google Scholar 

  • V.N. Fedorenko, G.D. Fleishman, Enhancement of hydromagnetic turbulence near a shock wave front and the limiting energies of particles accelerated in supernova remnants. Soviet Astron. 32, 398 (1988)

    ADS  MATH  Google Scholar 

  • G.D. Fleishman, M.F. Bietenholz, Diffusive synchrotron radiation from pulsar wind nebulae. MNRAS 376, 625–633 (2007)

    Article  ADS  Google Scholar 

  • X.Y. Gao, J.L. Han, W. Reich, P. Reich, X.H. Sun, L. Xiao, A Sino-German λ6 cm polarization survey of the galactic plane. V. Large supernova remnants. A&A529, A159 (2011)

    Google Scholar 

  • V.L. Ginzburg,Theoretical Physics and Astrophysics, 3rd revised and enlarged edn. [in Russian] (Izdatel Nauka, Moscow, 1987)

    Google Scholar 

  • V.L. Ginzburg, S.I. Syrovatskii,The Origin of Cosmic Rays (Macmillan, New York, 1964)

    Google Scholar 

  • P. Goldreich, W.H. Julian, Pulsar electrodynamics. ApJ 157, 869 (1969)

    Article  Google Scholar 

  • P. Haensel, A.Y. Potekhin, D.G. Yakovlev (eds.), Neutron stars 1 : equation of state and structure. Astrophysics and Space Science Library, vol. 326 (Springer, New York, 2007)

    Google Scholar 

  • S. Hayakawa, Cosmic Ray Physics. Part_2. Astrophysical Aspects (Mir, Moskva, 1974)

    Google Scholar 

  • J.J. Hester, J.M. Stone, P.A. Scowen, B. Jun, J.S. Gallagher, M.L. Norman, G.E. Ballester, C.J. Burrows, S. Casertano, J.T. Clarke, D. Crisp, R.E. Griffiths, J.G. Hoessel, J.A. Holtzman, J. Krist, J.R. Mould, R. Sankrit, K.R. Stapelfeldt, J.T. Trauger, A. Watson, J.A. Westphal, WFPC2 studies of the crab nebula. III. Magnetic Rayleigh-Taylor instabilities and the origin of the filaments. ApJ 456, 225 (1996)

    Google Scholar 

  • Y.N. Istomin, Conferences and symposia: electron-positron plasma generation in the magnetospheres of neutron stars. Physics Uspekhi 51, 844–848 (2008)

    ADS  Google Scholar 

  • C.F. Kennel, F.V. Coroniti, Confinement of the crab pulsar’s wind by its supernova remnant. ApJ 283, 694–709 (1984a)

    Article  ADS  Google Scholar 

  • C.F. Kennel, F.V. Coroniti, Magnetohydrodynamic model of crab nebula radiation. ApJ 283, 710–730 (1984b)

    Article  ADS  Google Scholar 

  • K.O. Kiepenheuer, Cosmic rays as the source of general galactic radio emission. Phys. Rev.79, 738–739 (1950)

    Article  ADS  Google Scholar 

  • P.O. Lagage, C.J. Cesarsky, The maximum energy of cosmic rays accelerated by supernova shocks. A&A 125, 249–257 (1983)

    ADS  MATH  Google Scholar 

  • M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. Journ. Geo. Res. 88, 6109–6119 (1983)

    Article  ADS  Google Scholar 

  • M.S. Longair, High Energy Astrophysics (Cambridge University Press, Cambridge, 1981)

    Google Scholar 

  • R.N. Manchester, J.H. Taylor,Pulsars (W. H. Freeman, San Francisco, 1977)

    Google Scholar 

  • H.L. Marshall, D.E. Harris, J.P. Grimes, J.J. Drake, A. Fruscione, M. Juda, R.P. Kraft, S. Mathur, S.S. Murray, P.M. Ogle, D.O. Pease, D.A. Schwartz, A.L. Siemiginowska, S.D. Vrtilek, B.J. Wargelin, Structure of the X-ray emission from the Jet of 3C 273. ApJ 549, L167–L171 (2001)

    Article  ADS  Google Scholar 

  • K. Mori, J.J. Hester, D.N. Burrows, G.G. Pavlov, H. Tsunemi, Chandra Reveals the Dynamic Structure of the Inner Crab Nebula, inASP Conference Series 271: Neutron Stars in Supernova Remnants, p. 157 (2002)

    Google Scholar 

  • V.S. Murzin,Astrofizika Kosmicheskikh Luchei [in Russian] (Logos, Moscow, 2007)

    Google Scholar 

  • A.Y. Potekhin, The physics of neutron stars. Physics Uspekhi53, 1235–1256 (2010)

    Article  ADS  Google Scholar 

  • R.D. Preece, M.S. Briggs, R.S. Mallozzi, G.N. Pendleton, W.S. Paciesas, D.L. Band, The BATSE gamma-ray burst spectral catalog. I. High time resolution spectroscopy of bright bursts using high energy resolution data. ApJS 126, 19–36 (2000)

    Google Scholar 

  • V.S. Ptuskin, Conferences and symposia the origin of cosmic rays. Physics Uspekhi 53, 958–961 (2010)

    Article  ADS  Google Scholar 

  • B. Reville, A.R. Bell, A filamentation instability for streaming cosmic rays. MNRAS 419, 2433–2440 (2012)

    Article  ADS  Google Scholar 

  • S.L. Shapiro, S.A. Teukolsky,Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley-Interscience, New York, 1983)

    Google Scholar 

  • D. ter Haar, Pulsars. Phys. Rep. 3 (1972)

    Google Scholar 

  • J. Vink, Supernova remnants: the X-ray perspective. ArXiv e-print 1112.0576. AAPR vol. 20, pp. 49 (2012). doi 10.1007/s00159-011-0049-1. http://adsabs.harvard.edu/abs/2012A%26ARv..20...49V. Provided by the SAO/NASA Astrophysics Data System

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. ApJ 703, L29–L32 (2009)

    Article  ADS  Google Scholar 

  • D.G. Wentzel, Hydromagnetic waves excited by slowly streaming cosmic rays. ApJ 152, 987 (1968)

    Article  ADS  Google Scholar 

  • D.G. Yakovlev, K.P. Levenfish, Y.A. Shibanov, Reviews of topical problems: cooling of neutron stars and superfluidity in their cores. Physics Uspekhi42, 737–778 (1999)

    Article  ADS  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. ApJ 678, 939–949 (2008)

    Article  ADS  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, Modeling Bell’s nonresonant cosmic-ray instability. ApJ 678, 255–261 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Ultrarelativistic Component of Astrophysical Plasmas. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics