System CaO–MgO–Al2O3–SiO2 Undersaturated with Silica

  • Tibor Gasparik


Despite being relatively simple, the CMAS system represents a good approximation to complex mantle compositions, since its phase relations resemble closely the phase relations observed in mantle materials, and include all important phases occurring in the Earth’s mantle. At the same time, the system is complex enough to serve as a good starting point for petrologic applications, such as the thermobarometry of mantle xenoliths and metamorphic rocks, and for understanding the mineralogy, chemistry, and structure of the deep Earth. The importance of the CMAS system is evident from the amount of time and effort devoted to the experimental investigation of the corresponding phase relations and to the measurement of the thermochemical, physical, and structural properties of the participating phases.


Phase Relation Mantle Xenolith Spinel Peridotite Spinel Lherzolite Garnet Lherzolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    Gasparik, T.: Two-pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2. Contrib. Miner. Petrol. 87, 87–97 (1984)CrossRefGoogle Scholar
  2. 4.
    Gasparik, T.: Experimentally determined stability of clinopyroxene + garnet + corundum in the system CaO–MgO–Al2O3–SiO2. Am. Mineral. 69, 1025–1035 (1984)Google Scholar
  3. 5.
    Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO–Al2O3–SiO2. Geochim. Cosmochim. Acta 48, 2537–2545 (1984)CrossRefGoogle Scholar
  4. 6.
    Gasparik, T., Newton, R.C.: The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO–Al2O3–SiO2. Contrib Miner Petrol 85, 186–196 (1984)CrossRefGoogle Scholar
  5. 11.
    Gasparik, T.: Experimental study of subsolidus phase relations and mixing properties of clinopyroxene in the silica saturated system CaO–MgO–Al2O3–SiO2. Am. Mineral. 71, 686–693 (1986)Google Scholar
  6. 15.
    Gasparik, T.: Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contrib. Miner. Petrol. 102, 389–405 (1989)CrossRefGoogle Scholar
  7. 21.
    Gasparik, T.: Phase relations in the transition zone. J. Geophys. Res. 95, 15751–15769 (1990)CrossRefGoogle Scholar
  8. 26.
    Herzberg, C., Gasparik, T.: Garnet and pyroxenes in the mantle: a test of the majorite fractionation hypothesis. J. Geophys. Res. 96, 16263–16274 (1991)CrossRefGoogle Scholar
  9. 28.
    Gasparik, T.: Melting experiments on the enstatite-pyrope join at 80–152 kbar. J. Geophys. Res. 97, 15181–15188 (1992)CrossRefGoogle Scholar
  10. 37.
    Gasparik, T.: A petrogenetic grid for the system MgO–Al2O3–SiO2. J. Geol. 102, 97–109 (1994)CrossRefGoogle Scholar
  11. 44.
    Gasparik, T.: Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib. Miner. Petrol. 124, 139–153 (1996)CrossRefGoogle Scholar
  12. 56.
    Gasparik, T.: An internally consistent thermodynamic model for the system CaO–MgO–Al2O3–SiO2 derived primarily from phase equilibrium data. J. Geol. 108, 103–119 (2000)CrossRefGoogle Scholar
  13. 59.
    Gasparik, T., Huchison, M.T.: Experimental evidence for the origin of two kinds of inclusions in diamonds from the deep mantle. Earth. Planet. Sci. Lett. 181, 103–114 (2000)CrossRefGoogle Scholar
  14. 73.
    Agee, C.B., Li, J., Shannon, M.C., Circone, S.: Pressure-temperature phase diagram for the allende meteorite. J. Geophys. Res. 100, 17725–17740 (1995)CrossRefGoogle Scholar
  15. 79.
    Akimoto, S., Komada, E., Kushiro, I.: Effect of pressure on the melting of olivine and spinel polymorph of Fe2SiO4. J. Geophys. Res. 72, 679–686 (1967)CrossRefGoogle Scholar
  16. 81.
    Allen, E.T.,Wright, F.E.,Clement, J.K.: Minerals of the composition MgSiO3; a case of tetramorphism. Am J Sci (4th ser). 22, 385–438 (1906)Google Scholar
  17. 84.
    Anderson, D.L.: Chemical stratification of the mantle. J. Geophys. Res. 84, 6297–6298 (1979)CrossRefGoogle Scholar
  18. 85.
    Anderson, D.L.: Hotspots, basalts, and the evolution of the mantle. Science 213, 82–89 (1981)CrossRefGoogle Scholar
  19. 86.
    Anderson, D.L.: Theory of the Earth. Blackwell, Boston Oxford London Edinburgh Melbourne (1989)Google Scholar
  20. 87.
    Angel, R.J., Chopelas, A., Ross, N.L.: Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358, 322–324 (1992)CrossRefGoogle Scholar
  21. 89.
    Asahara, Y., Ohtani, E., Suzuki, A.: Melting relations of hydrous and dry mantle compositions and the genesis of komatiites. Geophys. Res. Lett. 25, 2201–2204 (1998)CrossRefGoogle Scholar
  22. 95.
    Berman, R.G.: Mixing properties of Ca–Mg–Fe–Mn garnets. Am. Mineral. 75, 328–344 (1990)Google Scholar
  23. 96.
    Berman, R.G., Brown, T.H.: Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO-Fe2O3-Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contrib. Miner. Petrol. 89, 168–183 (1985)CrossRefGoogle Scholar
  24. 104.
    Boettcher, A.L.: The system CaO–Al2O3–SiO2–H2O at high pressure and temperature. J Petrol 11, 337–379 (1970)CrossRefGoogle Scholar
  25. 112.
    Boyd, F.R.: Garnet peridotites and the system CaSiO3–MgSiO3–Al2O3. Miner. Soc. Am. Spec. Pap. 3, 63–75 (1970)Google Scholar
  26. 121.
    Brey, G.P., Nickel, K.G., Kogarko, L.: Garnet-pyroxene equilibria in the system CaO–MgO–Al2O3–SiO2 (CMAS): prospects for simplified (“T-independent”) lherzolite barometry and an eclogite-barometer. Contrib. Miner. Petrol. 92, 448–455 (1986)CrossRefGoogle Scholar
  27. 132.
    Carlson, W.D.: Subsolidus phase equilibria near the enstatite-diopside join in CaO-MgO-Al2O3–SiO2 at atmospheric pressure. Am. Mineral. 74, 325–332 (1989)Google Scholar
  28. 140.
    Charlu, T.V., Newton, R.C., Kleppa, O.J.: Enthalpy of formation of some lime silicates by hightemperature solution calorimetry, with discussion of high pressure phase equilibria. Geochim. Cosmochim. Acta 42, 367–375 (1978)CrossRefGoogle Scholar
  29. 141.
    Charlu, T.V., Newton, R.C., Kleppa, O.J.: Thermochemistry of synthetic Ca2Al2SiO7 (gehlenite)- Ca2MgSi2O7 (åkermanite) melilites. Geochim. Cosmochim. Acta 45, 1609–1617 (1981)CrossRefGoogle Scholar
  30. 146.
    Clark Jr., S.P., Schairer, J.F., de Neufville, J.: Phase relations in the system CaMgSi2O6–CaAl2SiO6–SiO2 at low and high pressure. Carnegie. Inst. Wash. Yearb. 61, 59–68 (1962)Google Scholar
  31. 152.
    Danckwerth, P.A., Newton, R.C.: Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO–Al2O3–SiO2 in the range 900°–1100°C and A12O3 isopleths of enstatite in the spinel field. Contrib. Miner. Pet. 66, 189–201 (1978)CrossRefGoogle Scholar
  32. 174.
    Fujii, T.: Pyroxene equilibria in spinel lherzolite. Carnegie. Inst. Wash. Yearb. 76, 569–572 (1977)Google Scholar
  33. 179.
    Ganguly, J., Cheng, W., O’Neill, H.S.C.: Syntheses volume and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties. Am. Mineral. 78, 583–593 (1993)Google Scholar
  34. 190.
    Gudfinnsson, G.H., Presnall, D.C.: Melting relations of model lherzolite in the system CaO–MgO–Al2O3–SiO2 at 24–34 GPa and the generation of komatiites. J. Geophys. Res. 101, 27701–27709 (1996)CrossRefGoogle Scholar
  35. 205.
    Haselton, H.T.: Calorimetry of synthetic pyrope-grossular garnets and calculated stability relations. PhD thesis, University of Chicago, Chicago (1979)Google Scholar
  36. 206.
    Haselton, H.T., Newton, R.C.: Thermodynamics of pyrope-grossular garnets and their stabilities at high temperatures and high pressures. J. Geophys. Res. 85, 6973–6982 (1980)CrossRefGoogle Scholar
  37. 208.
    Hays, J.F.: Lime-alumina-silica. Carnegie. Inst. Wash. Yearb. 65, 234–239 (1966)Google Scholar
  38. 212.
    Herzberg, C.T.: The plagioclase-lherzolite to spinel-lherzolite facies boundary; its bearing on corona structure formation and tectonic history in the Norwegian Caledonides. In: Biggar, G.M. (ed.) Progress in Experimental Petrology, vol. D-3, pp. 233–235. The Natural Environment Research Council Publications, London (1976)Google Scholar
  39. 214.
    Herzberg, C.T., Biggar, G.M.: Subsolidus phase relations in the system CaMgSi2O6–CaAl2SiO6–Ca2Si2O6. In: MacKenzie, W.S. (ed.) Progress in Experimental Petrology, vol. D-4, pp. 138–140. Natural Environmental Research Council Publications, London (1978)Google Scholar
  40. 227.
    Howells, S., O’Hara, M.J.: Low solubility of alumina in enstatite and uncertainties in estimated palaeogeotherms. Phil. Trans. R. Soc. Lond. A. 288, 471–486 (1978)CrossRefGoogle Scholar
  41. 229.
    Huckenholz, H.G., Kunzmann, T.: Ca-Tschermaks pyroxene and the solubility of aluminum in diopside. Terra Abstracts, Suppl 1, vol 6, p. 25. Blackwell, London (1994)Google Scholar
  42. 230.
    Huckenholz, H.G., Holzl, E., Lindhuber, W.: Grossularite, its solidus and liquidus relations in the CaO-Al2O3–SiO2–H2O system up to 10 kbar. Neues. Jahrb. Miner. Abh. 124, 1–46 (1975)Google Scholar
  43. 240.
    Irifune, T., Ringwood, A.E.: Phase transformations in primitive MORB and pyrolite compositions and some geophysical implications. In: Manghnani, M.H., Syono, Y. (eds.) High Pressure Research in Mineral Physics. Geophys Monograph 39, pp 231–242. American Geophysical Union, Washington DC (1987)Google Scholar
  44. 251.
    Jenkins, D.M., Newton, R.C.: Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1,000°C in the system CaO-MgO–Al2O3–SiO2, and at 900°C with natural garnet and olivine. Contrib. Miner. Pet. 68, 407–419 (1979)CrossRefGoogle Scholar
  45. 275.
    Koziol, A.M., Newton, R.C.: Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz geobarometer. Am. Mineral. 73, 216–223 (1988)Google Scholar
  46. 287.
    Kushiro, I., Yoder Jr., H.S.: Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation. J. Petrol. 7, 337–362 (1966)CrossRefGoogle Scholar
  47. 288.
    Kushiro, I., Syono, Y., Akimoto, S.: Effect of pressure on garnet-pyroxene equilibrium in the system MgSiO3-CaSiO3-Al2O3. Earth. Planet. Sci. Lett. 2, 460–464 (1967)CrossRefGoogle Scholar
  48. 303.
    Longhi, J., Baker, M.B.: The spinel/garnet transition in CMAS. Eos Trans AGU. 80(17), Spring Meet Suppl, S379 (1999)Google Scholar
  49. 305.
    Maaløe, S., Wyllie, P.J.: The join grossularite-pyrope at 30 kb and its petrological significance. Am. J. Sci. 279, 288–301 (1979)CrossRefGoogle Scholar
  50. 310.
    Malinovskiy, I.Y., Godovikov, A.A., Doroshev, A.M., Ran, E.N.: Silicate systems at high temperatures and pressures in connection with the petrology of the upper mantle and lower layers of the earth’s crust. In: Godovikov, A.A. (ed.) Physico-Chemical Conditions of the Processes of Formation of Minerals, pp 135–146. Acad Nauk SSSR, Novosibirsk (1976) (in Russian)Google Scholar
  51. 330.
    Mukhopadhyay, B.: Garnet-clinopyroxene geobarometry: the problems, a prospect, and an approximate solution with some applications. Am. Mineral. 76, 512–529 (1991)Google Scholar
  52. 334.
    Newton, R.C., Charlu, T.V., Kleppa, O.J.: Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO–MgO–Al2O3–SiO2. Geochim. Cosmochim. Acta 41, 369–377 (1977)CrossRefGoogle Scholar
  53. 339.
    Nickel, K.G., Brey, G.P., Kogarko, L.: Orthopyroxene-clinopyroxene equilibria in the system CaO–MgO–Al2O3–SiO2 (CMAS): new experimental results and implications for two-pyroxene thermometry. Contrib. Miner. Pet. 91, 44–53 (1985)CrossRefGoogle Scholar
  54. 344.
    Ohtani, E., Kato, T., Sawamoto, H.: Melting of a model chondritic mantle to 20 GPa. Nature 322, 352–353 (1986)CrossRefGoogle Scholar
  55. 354.
    Perkins III, D., Newton, R.C.: The compositions of coexisting pyroxenes and garnet in the system CaO–MgO–Al2O3–SiO2 at 900–1,100°C and high pressures. Contrib. Miner. Pet. 75, 291–300 (1980)CrossRefGoogle Scholar
  56. 363.
    Presnall, D.C.: Alumina content of enstatite as a geobarometer for plagioclase and spinel lherzolites. Am. Mineral. 61, 582–588 (1976)Google Scholar
  57. 405.
    Sen, G.: Experimental determination of pyroxene compositions in the system CaO–MgO–Al2O3–SiO2 at 900–1200°C and 10–15 kbar using PbO and H2O fluxes. Am. Mineral. 70, 678–695 (1985)Google Scholar
  58. 411.
    Skinner, B.J., Boyd, F.R.: Aluminous enstatites. Carnegie. Inst. Wash. Yearb. 63, 163–165 (1964)Google Scholar
  59. 427.
    Takahashi, E.: Melting of dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. 91, 9367–9382 (1986)CrossRefGoogle Scholar
  60. 447.
    Wei, K., Trønnes, R.G., Scarfe, C.M.: Phase relations of aluminum-undepleted and aluminum-depleted komatiites at pressures of 4–12 GPa. J. Geophys. Res. 95, 15817–15827 (1990)CrossRefGoogle Scholar
  61. 460.
    Wood, B.J., Holloway, J.R.: A thermodynamic model for subsolidus equilibria in the system CaO-MgO-Al2O3-SiO2. Geochim. Cosmochim. Acta 48, 159–176 (1984)CrossRefGoogle Scholar
  62. 461.
    Wood, B.J., Nicholls, J.: The thermodynamic properties of reciprocal solid solutions. Contrib. Miner. Pet. 66, 389–400 (1978)CrossRefGoogle Scholar
  63. 464.
    Yamada, H., Takahashi, E.: Subsolidus phase relations between coexisting garnet and two pyroxenes at 50 to 100 kbar in the system CaO–MgO–Al2O3–SiO2. In: Kornprobst, J. (ed.) Kimberlites II: The Mantle and Crust-Mantle Relationships, pp. 247–255. Elsevier, Amsterdam (1984)Google Scholar
  64. 470.
    Yoder Jr., H.S.: Spilites and serpentinites. Carnegie. Inst. Wash. Yearb. 65, 269–279 (1967)Google Scholar
  65. 476.
    Zhang, J., Herzberg, C.: Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. 99, 17729–17742 (1994)CrossRefGoogle Scholar
  66. 478.
    Zhu, H., Newton, R.C., Kleppa, O.J.: Enthalpy of formation of wollastonite (CaSiO3) and anorthite (CaAl2Si2O8) by experimental phase equilibrium measurements and high-temperature solution calorimetry. Am. Mineral. 79, 134–144 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State University of New YorkHoltsvilleUSA

Personalised recommendations