Skip to main content

Composition and Structure of the Earth’s Interior

  • Chapter
  • First Online:
Phase Diagrams for Geoscientists
  • 2311 Accesses

Abstract

The primary goal of the research at very high pressures is the interpretation of the Earth’s structure, as revealed by seismic observations, in terms of the mineral and chemical composition. A major progress in the study of the Earth’s interior has been made in the last 20 year, primarily due to advances in petrology, geophysics, and geochemistry. However, our understanding of the Earth’s interior lags severely behind the accumulation of the facts, because it is hampered and distorted by the many myths and beliefs inherited from the past. The origins of many of these views cannot be even traced anymore, others were proposed in the distant past on the basis of meager or nonexistent evidence. Some represent only a clever scheme to compensate for the lack of facts and the inability to obtain them. Yet, despite the advances that make possible now to obtain those facts, the old views still figure prominently in the current understanding of the Earth’s interior, and stand in the way of the real progress made possible by the accumulation of the new evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gasparik, T.: Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contrib. Miner. Petrol. 102, 389–405 (1989)

    Article  Google Scholar 

  2. Gasparik, T.: Enstatite-jadeite join and its role in the earth’s mantle. Contrib. Miner. Petrol. 111, 283–298 (1992)

    Article  Google Scholar 

  3. Gasparik, T.: Melting experiments on the enstatite-pyrope join at 80–152 kbar. J. Geophys. Res. 97, 15181–15188 (1992)

    Article  Google Scholar 

  4. Gasparik, T.: The role of volatiles in the transition zone. J. Geophys. Res. 98, 4287–4299 (1993)

    Article  Google Scholar 

  5. Drake, M.J., McFarlane, E.A., Gasparik, T., Rubie, D.C.: Mg-perovskite/silicate melt and majorite garnet/silicate melt partition coefficients in the system CaO–MgO–SiO2 at high temperatures and pressures. J. Geophys. Res. 98, 5427–5431 (1993)

    Article  Google Scholar 

  6. Hazen, R.M., Downs, R.T., Finger, L.W., Conrad, P.G., Gasparik, T.: Crystal chemistry of cabearing majorite. Am. Mineral. 79, 581–584 (1994)

    Google Scholar 

  7. Gasparik, T., Drake, M.J.: Partitioning of elements among two silicate perovskites, superphase B, and volatile bearing melt at 23 GPa and 1500–1600°C. Earth. Planet. Sci. Lett. 134, 307–318 (1995)

    Article  Google Scholar 

  8. Gasparik, T.: Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib. Miner. Petrol. 124, 139–153 (1996)

    Article  Google Scholar 

  9. Gasparik, T.: Diopside-jadeite join at 16–22 GPa. Phys. Chem. Miner. 23, 476–486 (1996)

    Article  Google Scholar 

  10. Gasparik, T.: A model for the layered mantle. Phys. Earth. Planet. Inter. 100, 197–212 (1997)

    Article  Google Scholar 

  11. Gasparik, T., Litvin, Y.A.: Stability of Na2Mg2Si2O7 and melting relations on the forsterite-jadeite join at pressures up to 22 GPa. Eur. J. Mineral. 9, 311–326 (1997)

    Google Scholar 

  12. Gasparik, T.: An internally consistent thermodynamic model for the system CaO–MgO–Al2O3–SiO2 derived primarily from phase equilibrium data. J. Geol. 108, 103–119 (2000)

    Article  Google Scholar 

  13. Gasparik, T.: Evidence for immiscibility in majorite garnet from experiments at 13–15 GPa. Geochim. Cosmochim. Acta 64, 1641–1650 (2000)

    Article  Google Scholar 

  14. Gasparik, T.: Evidence for the transition zone origin of some [Mg, Fe]O inclusions in diamonds. Earth. Planet. Sci. Lett. 183, 1–5 (2000)

    Article  Google Scholar 

  15. Gasparik, T., Huchison, M.T.: Experimental evidence for the origin of two kinds of inclusions in diamonds from the deep mantle. Earth. Planet. Sci. Lett. 181, 103–114 (2000)

    Article  Google Scholar 

  16. Inoue, T., Rapp, R.P., Zhang, J., Gasparik, T., Weidner, D.J., Irifune, T.: Garnet fractionation in a hydrous magma ocean and the origin of Al-depleted komatiites: melting experiments of hydrous pyrolite with REEs at high pressure. Earth. Planet. Sci. Lett. 177, 81–87 (2000)

    Article  Google Scholar 

  17. Wang, W., Gasparik, T.: Evidence for a deep-mantle origin of a NaPX-EN inclusion in diamond. Int. Geol. Rev. 42, 1000–1006 (2000)

    Article  Google Scholar 

  18. Wang, W., Gasparik, T., Rapp, R.P.: Partitioning of rare earth elements between CaSiO3 perovskite and coexisting phases: constraints on the formation of CaSiO3 inclusions in diamonds. Earth. Planet. Sci. Lett. 181, 291–300 (2000)

    Article  Google Scholar 

  19. Wang, W., Sueno, S., Takahashi, E., Yurimoto, H., Gasparik, T.: Enrichment processes at the base of the archean lithospheric mantle: observations from trace element characteristics of pyropic garnet inclusions in diamonds. Contrib. Miner. Petrol. 139, 720–733 (2000)

    Article  Google Scholar 

  20. Wang, W., Gasparik, T.: Metasomatic clinopyroxene inclusions in diamonds from the liaoning province, China. Geochim. Cosmochim. Acta 65, 611–620 (2001)

    Article  Google Scholar 

  21. Gasparik, T., Litvin, Y.A.: Experimental investigation of the effect of metasomatism by carbonatic melt on the composition and structure of the deep mantle. Lithos 60, 129–143 (2002)

    Article  Google Scholar 

  22. Gasparik, T.: Experimental investigation of the origin of majoritic garnet inclusions in diamonds. Phys. Chem. Minera. 29, 170–180 (2002)

    Article  Google Scholar 

  23. Agee, C.B., Walker, D.: Olivine flotation in mantle melt. Earth. Planet. Sci. Lett. 114, 315–324 (1993)

    Article  Google Scholar 

  24. Akaogi, M., Akimoto, S.: Pyroxene-garnet solid-solution equilibria in the system Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Phys. Earth. Planet. Inter. 15, 90–106 (1977)

    Article  Google Scholar 

  25. Akimoto, S., Akaogi, M.: The system Mg2SiO4–MgO–H2O at high pressures and temperatures – possible hydrous magnesian silicates in the mantle transition zone. Phys. Earth. Planet. Inter. 23, 268–275 (1980)

    Article  Google Scholar 

  26. Akimoto, S., Komada, E., Kushiro, I.: Effect of pressure on the melting of olivine and spinel polymorph of Fe2SiO4. J. Geophys. Res. 72, 679–686 (1967)

    Article  Google Scholar 

  27. Allegre, C.J.: Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the earth. Earth. Planet. Sci. Lett. 150, 1–6 (1997)

    Article  Google Scholar 

  28. Anders, E., Grevesse, N.: Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    Article  Google Scholar 

  29. Anderson, D.L.: Chemical stratification of the mantle. J. Geophys. Res. 84, 6297–6298 (1979)

    Article  Google Scholar 

  30. Anderson, D.L.: Hotspots, basalts, and the evolution of the mantle. Science 213, 82–89 (1981)

    Article  Google Scholar 

  31. Anderson, D.L.: Theory of the Earth. Blackwell, Boston Oxford London Edinburgh Melbourne (1989)

    Google Scholar 

  32. Bass, J.D., Anderson, D.L.: Composition of the upper mantle: geophysical tests of two petrological models. Geophys. Res. Lett. 11, 237–240 (1984)

    Article  Google Scholar 

  33. Benz, H.M., Vidale, J.E.: Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365, 147–150 (1993)

    Article  Google Scholar 

  34. Biellmann, C., Gillet, P., Guyot, F., Peyronneau, J., Reynard, B.: Experimental evidence for carbonate stability in the earth’s lower mantle. Earth. Planet. Sci. Lett. 118, 31–41 (1993)

    Article  Google Scholar 

  35. Bijwaard, H., Spakman, W.: Tomographic evidence for a narrow whole mantle plume below Iceland. Earth. Planet. Sci. Lett. 166, 121–126 (1999)

    Article  Google Scholar 

  36. Birch, F.: Elasticity and constitution of the earth’s interior. J. Geophys. Res. 57, 227–286 (1952)

    Article  Google Scholar 

  37. Blichert-Toft, J., Frei, R.: Complex Sm–Nd and Lu–Hf isotope systematics in metamorphic garnets from the Isua supracrustal belt, West Greenland. Geochim. Cosmochim. Acta 65, 3177–3187 (2001)

    Article  Google Scholar 

  38. Boyd, F.R., Gurney, J.J., Richardson, S.H.: Evidence for a 150–200 km thick archaean lithosphere from diamond inclusion thermobarometry. Nature 315, 387–389 (1985)

    Article  Google Scholar 

  39. Buddington, A.F.: Some petrological concepts and the interior of the earth. Am. Mineral. 28, 119–140 (1943)

    Google Scholar 

  40. Čadek, O., van den Berg, A.P.: Radial profiles of temperature and viscosity in the earth’s mantle inferred from the geoid and lateral seismic structure. Earth. Planet. Sci. Lett. 164, 607–615 (1998)

    Article  Google Scholar 

  41. Cameron, A.G.W., Ward, W.R.: The origin of the moon. Lunar. Sci. 7, 120–122 (1976)

    Google Scholar 

  42. Canil, D., Scarfe, C.M.: Phase relations in peridotite + CO2 systems to 12 GPa: implications for the origin of kimberlite and carbonate stability in the earth’s upper mantle. J. Geophys. Res. 95, 15805–15816 (1990)

    Article  Google Scholar 

  43. Chen, G., Cooke, J.A., Gwanmesia, G.D., Liebermann, R.C.: Elastic wave velocities of Mg3Al2Si3O12 pyrope garnet to 10 GPa. Am. Mineral. 84, 384–388 (1999)

    Google Scholar 

  44. Condie, K.L.: Plate tectonics and crustal evolution, 2nd edn. Pergamon Press, New York (1982)

    Google Scholar 

  45. Dalton, J.A., Presnall, D.C.: Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib. Miner. Pet. 131, 123–135 (1998)

    Article  Google Scholar 

  46. Davis, B.T.C., England, J.L.: The melting of forsterite up to 50 kilobars. J. Geophys. Res. 69, 1113–1116 (1964)

    Article  Google Scholar 

  47. Dobson, D.P., Jones, A.P., Rabe, R., Sekine, T., Kurita, K., Taniguchi, T., Kondo, T., Kato, T., Shimomura, O., Urakawa, S.: In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth. Planet. Sci. Lett. 143, 207–215 (1996)

    Article  Google Scholar 

  48. Dueker, K.G., Sheehan, A.F.: Mantle discontinuity structure beneath the Colorado Rocky Mountains and High Plains. J. Geophys. Res. 103, 7153–7169 (1998)

    Article  Google Scholar 

  49. Duffy, T.S., Anderson, D.L.: Seismic velocity in mantle materials and mineralogy of the upper mantle. J. Geophys. Res. 94, 1895–1912 (1989)

    Article  Google Scholar 

  50. Flanagan, M.P., Shearer, P.M.: Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103, 2673–2692 (1998)

    Article  Google Scholar 

  51. Flesch, L.M., Li, B., Liebermann, R.C.: Sound velocities of polycrystalline MgSiO3-orthopyroxene to 10 GPa at room temperature. Am. Mineral. 83, 444–450 (1998)

    Google Scholar 

  52. Forte, A.M., Peltier, W.R., Dziewonski, A.M.: Inferences of mantle viscosity from tectonic plate velocities. Geophys. Res. Lett. 18, 1747–1750 (1991)

    Article  Google Scholar 

  53. Frost, D.J., Fei, Y.: Stability of phase D at high pressure and high temperature. J. Geophys. Res. 103, 7463–7474 (1998)

    Article  Google Scholar 

  54. Fukao, Y., Obayashi, M., Inoue, H., Nenbai, M.: Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res. 97, 4809–4822 (1992)

    Article  Google Scholar 

  55. Gaherty, J.B., Jordan, T.H., Gee, L.S.: Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res. 101, 22291–22309 (1996)

    Article  Google Scholar 

  56. Galer, S.J.G., Goldstein, S.L.: Early mantle differentiation and its thermal consequences. Geochim. Cosmochim. Acta 55, 227–239 (1991)

    Article  Google Scholar 

  57. Genge, M.J., Price, G.D., Jones, A.P.: Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas. Earth. Planet. Sci. Lett. 131, 225–238 (1995)

    Article  Google Scholar 

  58. Gossler, J., Kind, R.: Seismic evidence for very deep roots of continents. Earth. Planet. Sci. Lett. 138, 1–13 (1996)

    Article  Google Scholar 

  59. Gu, Y., Dziewonski, A.M., Agee, C.B.: Global de-correlation of the topography of transition zone discontinuities. Earth. Planet. Sci. Lett. 157, 57–67 (1998)

    Article  Google Scholar 

  60. Gwanmesia, G.D., Chen, G., Liebermann, R.C.: Sound velocities in MgSiO3-garnet to 8 GPa. Geophys. Res. Lett. 25, 4553–4556 (1998)

    Article  Google Scholar 

  61. Haggerty, S.E.: A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285, 851–860 (1999)

    Article  Google Scholar 

  62. Haggerty, S.E., Sautter, V.: Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science 248, 993–996 (1990)

    Article  Google Scholar 

  63. Hammouda, T., Laporte, D.: Ultrafast mantle impregnation by carbonatite melts. Geology 28, 283–285 (2000)

    Article  Google Scholar 

  64. Harris, J., Hutchison, M.T., Hursthouse, M., Light, M., Harte, B.: A new tetragonal silicate mineral occurring as inclusions in lower-mantle diamonds. Nature 387, 486–488 (1997)

    Article  Google Scholar 

  65. Harte, B., Hutchison, M.T., Harris, J.W.: Trace element characteristics of the lower mantle: an ion probe study of inclusions in diamonds from Sao Luiz, Brazil. Mineral Mag 58A, 386–387 (1994)

    Article  Google Scholar 

  66. Harte, B., Harris, J.W., Hutchison, M.T., Watt, G.R.,Wilding, M.C.: Lower mantle mineral associations in diamonds from São Luiz, Brazil. In: Fei, Y., Bertka, C., Mysen, B.O. (eds) Mantle Mineralogy: Field Observations and High Pressure Experimentation: A Tribute to Francis R (Joe) Boyd, Vol 6, pp. 125–153. The Geochemical Society, Houston, Geochem Soc Spec Publ (1999)

    Google Scholar 

  67. Hartmann, W.K., Davis, D.R.: Satellite-sized planetesimals and lunar origin. Icarus 24, 504–515 (1975)

    Article  Google Scholar 

  68. Hofmeister, A.M.: Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283, 1699–1706 (1999)

    Article  Google Scholar 

  69. Hsu, L.C.: Melting of fayalite up to 40 kilobars. J. Geophys. Res. 72, 4235–4244 (1967)

    Article  Google Scholar 

  70. Hutchison, M.T.: The constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions. PhD thesis, University of Edinburgh, Edinburgh (1997)

    Google Scholar 

  71. Hutchison, M.T., Hursthouse, M.B., Light, M.E.: Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contrib. Miner. Pet. 142, 119–126 (2001)

    Article  Google Scholar 

  72. Hunter, R.S., McKenzie, D.: The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth. Planet. Sci. Lett. 92, 347–356 (1989)

    Article  Google Scholar 

  73. Inoue, T.: Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa. Phys. Earth. Planet. Inter. 85, 237–263 (1994)

    Article  Google Scholar 

  74. Ionov, D.A., Dupuy, C., O’Reilly, S.Y., Kopylova, M.G., Genshaft, Y.S.: Carbonated peridotite xenoliths from Spitsbergen:iImplications for trace element signature of mantle carbonate metasomatism. Earth. Planet. Sci. Lett. 119, 283–297 (1993)

    Article  Google Scholar 

  75. Iota, V., Yoo, C.S., Cynn, H.: Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283, 1510–1513 (1999)

    Article  Google Scholar 

  76. Ireland, T.R., Wlotzka, F.: The oldest zircons in the solar system. Earth. Planet. Sci. Lett. 109, 1–10 (1992)

    Article  Google Scholar 

  77. Irifune, T.: An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys. Earth. Planet. Inter. 45, 324–336 (1987)

    Article  Google Scholar 

  78. Irifune, T., Sekine, T., Ringwood, A.E., Hibberson, W.O.: The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth. Planet. Sci. Lett. 77, 245–256 (1986)

    Article  Google Scholar 

  79. Irifune, T., et al.: The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279, 1698–1700 (1998)

    Article  Google Scholar 

  80. Jacobsen, S.B., Wasserburg, G.J.: Sm-Nd isotopic evolution of chondrites. Earth. Planet. Sci. Lett. 50, 139–155 (1980)

    Article  Google Scholar 

  81. Jeanloz, R., Richter, F.: Convection, composition and the thermal state of the lower mantle. J. Geophys. Res. 84, 5497–5504 (1979)

    Article  Google Scholar 

  82. Johnson, M.C., Walker, D.: Brucite [Mg(OH)2] dehydration and the molar volume of H2O to 15 GPa. Am. Mineral. 78, 271–284 (1993)

    Google Scholar 

  83. Jones, A.P., Price, G.D., Price, N.J., DeCarli, P.S., Clegg, R.A.: Impact induced melting and the development of large igneous provinces. Earth. Planet. Sci. Lett. 202, 551–561 (2002)

    Article  Google Scholar 

  84. Joswig, W., Stachel, T., Harris, J.W., Baur, W.H., Brey, G.P.: New Ca-silicate inclusions in diamonds – tracers from the lower mantle. Earth. Planet. Sci. Lett. 173, 1–6 (1999)

    Article  Google Scholar 

  85. Kanzaki, M.: Stability of hydrous magnesium silicates in the mantle transition zone. Phys. Earth. Planet. Inter. 66, 307–312 (1991)

    Article  Google Scholar 

  86. Kaula, W.M.: Minimal upper mantle temperature variations consistent with observed heat flow and plate velocities. J. Geophys. Res. 88, 10323–10332 (1983)

    Article  Google Scholar 

  87. Kerrick, D.M., Connolly, J.A.D.: Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26, 375–378 (1998)

    Article  Google Scholar 

  88. Kesson, S.E., Fitz Gerald, J.D.: Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowustite:implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth. Planet. Sci. Lett. 111, 229–240 (1991)

    Article  Google Scholar 

  89. Kido, M., Čadek, O.: Inferences of viscosity from the oceanic geoid:indication of a low viscosity zone below the 660-km discontinuity. Earth. Planet. Sci. Lett. 151, 125–137 (1997)

    Article  Google Scholar 

  90. King, S.D., Masters, G.: An inversion for radial viscosity structure using seismic tomography. Geophys. Res. Lett. 19, 1551–1554 (1992)

    Article  Google Scholar 

  91. Kudoh, Y., Inoue, T., Arashi, H.: Structure and crystal chemistry of hydrous wadsleyite, Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone. Phys. Chem. Miner. 23, 461–469 (1996)

    Article  Google Scholar 

  92. Lindsley, D.H.: Pressure-temperature relations in the system FeO–SiO2. Carnegie. Inst. Wash. Yearb. 65, 226–230 (1967)

    Google Scholar 

  93. Liu, L., Lin, C.C.: High-pressure phase transformations of carbonates in the system CaO–MgO–SiO2–CO2. Earth. Planet. Sci. Lett. 134, 297–305 (1995)

    Article  Google Scholar 

  94. Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., Compston, W.: The earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 (1992)

    Article  Google Scholar 

  95. McCammon, C., Hutchison, M., Harris, J.: Ferric iron content of mineral inclusions in diamonds from Sao Luiz: a view into the lower mantle. Science 278, 434–436 (1997)

    Article  Google Scholar 

  96. McKenzie, D.: The extraction of magma from the crust and mantle. Earth. Planet. Sci. Lett. 74, 81–91 (1985)

    Article  Google Scholar 

  97. McKenzie, D., Bickle, M.J.: The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988)

    Article  Google Scholar 

  98. Meyer, H.O.A., Boyd, F.R.: Composition and origin of crystalline inclusions in natural diamonds. Geochim. Cosmochim. Acta 36, 1255–1273 (1972)

    Article  Google Scholar 

  99. Minarik, W.G., Watson, E.B.: Interconnectivity of carbonate melt at low melt fraction. Earth. Planet. Sci. Lett. 133, 423–437 (1995)

    Article  Google Scholar 

  100. Molina, J.F., Poli, S.: Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O–CO2-bearing basalts. Earth. Planet. Sci. Lett. 176, 295–310 (2000)

    Article  Google Scholar 

  101. Moore, R.O., Gurney, J.J.: Pyroxene solid solution in garnets included in diamond. Nature 318, 553–555 (1985)

    Article  Google Scholar 

  102. Moore, R.O., Otter, M.L., Rickard, R.S., Harris, J.W., Gurney, J.J.: The occurrence of moissanite and ferro-periclase as inclusions in diamond.In: Extd Abstr 4th Inter Kimberlite Conf, Perth, Geol Soc Austral, Vol 16, pp. 409–411 (1986)

    Google Scholar 

  103. Moore, R.O., Gurney, J.J., Griffin, W.L., Shimizu, N.: Ultra-high pressure garnet inclusions in monastery diamonds: trace element abundance patterns and conditions of origin. Eur. J. Mineral. 3, 213–230 (1991)

    Google Scholar 

  104. Morgan, P., Phillips, R.J.: Hot spot heat transfer: its application to venus and implications to venus and earth. J. Geophys. Res. 88, 8305–8317 (1983)

    Article  Google Scholar 

  105. Nelson, D.R., Chivas, A.R., Chappell, B.W., McCulloch, M.T.: Geochemical and isotope systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta 52, 1–17 (1988)

    Article  Google Scholar 

  106. Newsom, H.E., Taylor, S.R.: Geochemical implications of the formation of the moon by a single giant impact. Nature 338, 29–34 (1989)

    Article  Google Scholar 

  107. Ni, S., Ding, X., Helmberger, D.V., Gurnis, M.: Low-velocity structure beneath Africa from forward modeling. Earth. Planet. Sci. Lett. 170, 497–507 (1999)

    Article  Google Scholar 

  108. Nicol, M., Yoo, C-S., Cynn, H., Iota-Herbei, V. Transformations in the carbon-oxygen system initiated by laser heating at high pressure: evidence for an ionic dimer and “superhard”polymer of carbon dioxide. Eos Trans AGU. 81(19), Spring Meet. Suppl, S48 (2000)

    Google Scholar 

  109. Ohtani, E., Suzuki, A., Kato, T.: Flotation of olivine in the peridotite melt at high pressure. Proc Jpn Acad. 69(B), 23–28 (1993)

    Google Scholar 

  110. Ohtani, E., Shibata, T., Kubo, T., Kato, T.: Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys. Res. Lett. 22, 2553–2556 (1995)

    Article  Google Scholar 

  111. O’Nions, R.K., Oxburgh, E.R.: Heat and helium in the earth. Nature 306, 429–432 (1983)

    Article  Google Scholar 

  112. O’Nions, R.K., Tolstikhin, I.N.: Limits on the mass flux between lower and upper mantle and stability of layering. Earth. Planet. Sci. Lett. 139, 213–222 (1996)

    Article  Google Scholar 

  113. Pearson, D.G., Shirey, S.B., Harris, J.W., Carlson, R.W.: Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S Africa: constraints on diamond ages and mantle Re–Os systematics. Earth. Planet. Sci. Lett. 160, 311–326 (1998)

    Article  Google Scholar 

  114. Pekeris, C.L.: Thermal convection in the interior of the earth. Monthly notices. R Astr Soc, Geophys Suppl. 3, 343–367 (1935)

    Google Scholar 

  115. Pino, N.A., Helmberger, D.V.: Upper mantle compressional velocity structure beneath the West Mediterranean Basin. J. Geophys. Res. 102, 2953–2967 (1997)

    Article  Google Scholar 

  116. Plank, T., Langmuir, C.H.: The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998)

    Article  Google Scholar 

  117. Pokhilenko, N.P., Sobolev, N.V., McDonald, J.A., Hall, A.E., Yefimova, E.S., Zedgenizov, D.A., Logvinova, A.M., Reimers, L.F.: Crystalline inclusions in diamonds from kimberlites of the snap lake area (Slave Craton, Canada): new evidences for the anomalous lithospheric structure. Dokl. Earth. Sci. 380, 806–811 (2001)

    Google Scholar 

  118. Pollack, H.N., Chapman, D.S.: On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophys 38, 279–296 (1977)

    Article  Google Scholar 

  119. Presnall, D.C., Walter, M.J.: Melting of forsterite, Mg2SiO4, from 9.7 to 16.5 GPa. J. Geophys. Res. 98, 19777–19783 (1993)

    Article  Google Scholar 

  120. Price, S.E., Russell, J.K., Kopylova, M.G.: Primitive magma from the Jericho pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry. J. Petrol. 41, 789–808 (2000)

    Article  Google Scholar 

  121. Prior, G.T.: On the genetic relationship and classification of meteorites. Miner. Mag. 18, 26–44 (1916)

    Article  Google Scholar 

  122. Rea, D.K., Ruff, L.J.: Composition and mass flux of sediment entering the world’s subduction zones: implications for global sediment budgets, great earthquakes, and volcanism. Earth. Planet. Sci. Lett. 140, 1–12 (1996)

    Article  Google Scholar 

  123. Ricard, Y., Vigny, C., Froidevaux, C.: Mantle heterogeneities, geoid and plate motion: a Monte Carlo inversion. J. Geophys. Res. 94, 13739–13754 (1989)

    Article  Google Scholar 

  124. Richardson, S.H., Harris, J.W.: Antiquity of peridotitic diamonds from the Siberian craton. Earth. Planet. Sci. Lett. 151, 271–277 (1997)

    Article  Google Scholar 

  125. Richardson, S.H., Gurney, J.J., Erlank, A.J., Harris, J.W.: Origin of diamonds in old enriched mantle. Nature 310, 198–202 (1984)

    Article  Google Scholar 

  126. Ringwood, A.E.: A model for the upper mantle. J. Geophys. Res. 67, 857–867 (1962)

    Article  Google Scholar 

  127. Ringwood, A.E.: The pyroxene-garnet transformation in the earth’s mantle. Earth. Planet. Sci. Lett. 2, 255–263 (1967)

    Article  Google Scholar 

  128. Ringwood, A.E.: Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York (1975)

    Google Scholar 

  129. Ringwood, A.E.: Phase transformations and differentiation in subducted lithosphere:implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol. 90, 611–643 (1982)

    Article  Google Scholar 

  130. Ringwood, A.E., Irifune, T.: Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature 331, 131–136 (1988)

    Article  Google Scholar 

  131. Ringwood, A.E., Major, A.: High-pressure reconnaissance investigations in the system Mg2SiO4–MgO–H2O. Earth. Planet. Sci. Lett. 2, 130–133 (1967)

    Article  Google Scholar 

  132. Ringwood, A.E., Kesson, S.E., Hibberson, W., Ware, N.: Origin of kimberlites and related magmas. Earth. Planet. Sci. Lett. 113, 521–538 (1992)

    Article  Google Scholar 

  133. Robinson, P.: The composition space of terrestrial pyroxenes – internal and external limits. In: Prewitt, C.T. (ed.) Reviews in Mineralogy. Pyroxenes, vol. 7, pp. 419–494. Mineral Soc Am, Washington DC (1980)

    Google Scholar 

  134. Rudnick, R.L., McDonough, W.F., Chappell, B.W.: Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth. Planet. Sci. Lett. 114, 463–475 (1993)

    Article  Google Scholar 

  135. Sautter, V., Haggerty, S.E., Field, S.: Ultradeep (>300 kilometers) ultramafic xenoliths: petrological evidence from the transition zone. Science 252, 827–830 (1991)

    Article  Google Scholar 

  136. Scott-Smith, B., Danchin, R., Harris, J., Stracke, K.: Kimberlites near Orrorroo, South Australia. In: Kornprobst, J. (ed.) Kimberlites I: Kimberlites and Related Rocks, pp. 121–142. Elsevier, Amsterdam (1984)

    Chapter  Google Scholar 

  137. Shearer, P.M.: Transition zone velocity gradients and the 520-km discontinuity. J. Geophys. Res. 101, 3053–3066 (1995)

    Article  Google Scholar 

  138. Simmons, N.A., Gurrola, H.: Multiple seismic discontinuities near the base of the transition zone in the earth’s mantle. Nature 405, 559–562 (2000)

    Article  Google Scholar 

  139. Smyth, J.R.: β-Mg2SiO4: a potential host for water in the mantle? Am. Mineral. 72, 1051–1055 (1987)

    Google Scholar 

  140. Snyder, G.A., Taylor, L.A., Crozaz, G.: Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14: an ion probe study of evolved rocks on the moon. Geochim. Cosmochim. Acta 57, 1143–1149 (1993)

    Article  Google Scholar 

  141. Sobolev, N.V., Yefimova, E.S., Reimers, L.F., Zakharchenko, O.D., Makhin, A.I., Usova, L.V.: Mineral inclusions in diamonds of the Arkhangelsk kimberlite province. Russ. Geol. Geophys. 38, 379–393 (1997)

    Google Scholar 

  142. Spiliopoulos, S., Stacey, F.: The earth’s thermal profile: is there a mid-mantle thermal boundary layer? J. Geodyn. 1, 61–77 (1984)

    Article  Google Scholar 

  143. Stachel, T., Viljoen, K.S., Brey, G., Harris, J.W.: Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth. Planet. Sci. Lett. 159, 1–12 (1998)

    Article  Google Scholar 

  144. Stachel, T., Brey, G.P., Harris, J.W.: Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib. Miner. Pet. 140, 1–15 (2000)

    Article  Google Scholar 

  145. Stachel, T., Harris, J.W., Brey, G.P., Joswig, W.: Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib. Miner. Pet 140, 16–27 (2000)

    Article  Google Scholar 

  146. Staudigel, H., Plank, T., White, B., Schmincke, H.-U.: Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Site 417 and 418. AGU. Geophys. Monogr. 96, 19–37 (1996)

    Article  Google Scholar 

  147. Stevenson, D.J.: On the role of surface tension in the migration of melts and fluids. Geophys. Res. Lett. 13, 1149–1152 (1986)

    Article  Google Scholar 

  148. Taylor, L.A., Snyder, G.A., Crozaz, G., Sobolev, V.N., Yefimova, E.S., Sobolev, N.V.: Eclogitic inclusions in diamonds: evidence of complex mantle processes over time. Earth. Planet. Sci. Lett. 142, 535–551 (1996)

    Article  Google Scholar 

  149. Terry, M.P., Robinson, P., Carswell, D.A., Gasparik, T.: Evidence for a proterozoic mantle plume and a thermotectonic model for exhumation of garnet peridotites, Western Gneiss region, Norway. Eos Trans AGU. 80(17), Spring Meet Suppl, S359–S360 (1999)

    Google Scholar 

  150. Treiman, A.H.: Carbonatite magma: properties and processes. In: Bell, K. (ed.) Carbonatites: Genesis and Evolution, pp. 89–104. Unwin Hyman, London (1989)

    Google Scholar 

  151. Tschauner, O., H-k, M., Hemley, R.J.: New transformations of CO2 at high pressures and temperatures. Phys. Rev. Lett. 87(075701), 1–4 (2001)

    Google Scholar 

  152. Van der Hilst, R., Engdahl, R., Spakman, W., Nolet, G.: Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–43 (1991)

    Article  Google Scholar 

  153. Wang, W., Gasparik, T.: Melting of a primitive aphanitic kimberlite at 5.0 to 23.5 GPa: Implications for the origin of kimberlitic melts. Eos Trans AGU. 80(46), Fall Meet Suppl, F1132 (1999)

    Google Scholar 

  154. Wang, W., Sueno, S.: Discovery of a NaPx–En inclusion in diamond: possible transition zone origin. Miner. J. 18, 9–16 (1996)

    Article  Google Scholar 

  155. Wang, W., Takahashi, E.: Subsolidus and melting experiments of a K-rich basaltic composition to 27 GPa: implication for the behavior of potassium in the mantle. Am. Mineral. 84, 357–361 (1999)

    Google Scholar 

  156. Wang, W., Takahashi, E., Sueno, S.: Geochemical properties of lithospheric mantle beneath the Sino-Korea craton; evidence from garnet xenocrysts and diamond inclusions. Phys. Earth. Planet. Inter. 107, 249–260 (1998)

    Article  Google Scholar 

  157. Watson, E.B.: Melt infiltration and magma evolution. Geology 10, 236–240 (1982)

    Article  Google Scholar 

  158. Washington, H.S.: The chemical composition of the earth. Am J Sci (5th ser). 9, 351–378 (1925)

    Google Scholar 

  159. Wen, L., Silver, P., James, D., Kuehnel, R.: Seismic evidence for a thermo-chemical boundary at the base of the earth’s mantle. Earth. Planet. Sci. Lett. 189, 141–153 (2001)

    Article  Google Scholar 

  160. Whitehouse, M.J., Kamber, B.S.: On the overabundance of light rare earth elements in terrestrial zircons and its implication for earth’s earliest magmatic differentiation. Earth. Planet. Sci. Lett. 204, 333–346 (2002)

    Article  Google Scholar 

  161. Wilding, M.C.: A study of diamonds with syngenetic inclusions. PhD thesis, University of Edinburgh, Edinburgh (1990)

    Google Scholar 

  162. Wilding, M.C., Harte, B., Harris, J.W.: Evidence for a deep origin for Sao Luiz diamonds. Fifth Inter Kimberlite Conf, Brazil, Spec Pub 2/91, 456–458 (1991)

    Google Scholar 

  163. Wopenka, B., Jolliff, B.L., Zinner, E., Kremser, D.T.: Trace element zoning and incipient metamictization in a lunar zircon: application of three microprobe techniques. Am. Mineral. 81, 902–912 (1996)

    Google Scholar 

  164. Yamamoto, K., Akimoto, S.: The system MgO–SiO2–H2O at high pressures and temperatures – stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10 Å-phase. Am. J. Sci. 277, 288–312 (1977)

    Article  Google Scholar 

  165. Yoo, C.S., Cynn, H., Gygi, F., Galli, G., Iota, V., Nicol, M., Carlson, S., Häusermann, D., Mailhiot, C.: Crystal structure of carbon dioxide at high pressure:“Superhard”polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530 (1999)

    Article  Google Scholar 

  166. Zedgenizov, D.A., Yefimova, E.S., Logvinova, A.M., Shatsky, V.S., Sobolev, N.V.: Ferropericlase inclusions in a diamond microcrystal from the Udachnaya kimberlite pipe, Yakutia. Dokl. Earth. Sci. 377A, 319–321 (2001)

    Google Scholar 

  167. Zhang, J., Herzberg, C.: Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. 99, 17729–17742 (1994)

    Article  Google Scholar 

  168. Zhang, R.Y., Liou, J.G.: Significance of magnesite in ultrahigh-pressure metamorphic rocks. Am. Mineral. 79, 397–400 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Gasparik .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gasparik, T. (2014). Composition and Structure of the Earth’s Interior. In: Phase Diagrams for Geoscientists. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5776-3_10

Download citation

Publish with us

Policies and ethics