Skip to main content

Coupled Climate and Earth System Models

  • Chapter
  • First Online:
Book cover Climate Change Modeling Methodology

Abstract

We are all familiar with weather forecasts that predict the local weather for the next few days. These are made using a high-resolution numerical model of the atmosphere, and sometimes extend out as far as 10 days.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Climate model:

A numerical model consisting of four components: atmosphere, ocean, land, and sea ice.

Earth system model:

A climate model with additional components, which must include a carbon cycle in the land, atmosphere, and ocean components.

Troposphere:

The lower part of the atmosphere where most of the weather occurs.

Stratosphere:

The region of the atmosphere above the troposphere, and is the location of the ozone layer.

Carbon cycle:

The processes by which carbon in all its forms interacts and moves around in the land, atmosphere, and ocean components of the climate system.

Positive feedback:

A set of processes whereby a small perturbation in the climate system amplifies and increases in size.

Negative feedback:

A set of processes whereby a small perturbation in the climate system decays and reduces in size.

Control simulation:

A run of a climate model or earth system model where the forcing is kept constant in time.

Ensemble simulations:

A set of runs which have the identical forcing, but start from slightly different initial conditions.

Chaotic system:

A system of equations with the property that two runs starting from slightly different initial conditions diverge from each other, often quite quickly.

Climate projection:

A simulation of the climate system into the future with prescribed forcing, where the model has not been initialized to the observed climate.

Climate forecast:

A simulation of the climate system into the future with prescribed forcing, where the model has been initialized to the observed climate.

Equilibrium climate sensitivity:

The increase in the globally averaged surface temperature in a model when the atmosphere concentration of carbon dioxide is doubled.

Atmosphere Model Intercomparison Project:

A standard simulation of the atmosphere component of a climate or earth system model, which allows different models to be compared to each other.

El Nino-Southern Oscillation:

The largest interannual signal in the climate system, which occurs primarily in the tropical region of the Pacific Ocean.

Thermohaline circulation:

The overturning circulation in the global oceans where water sinks at very high latitudes, spreads very slowly horizontally to all the ocean basins, and then slowly returns toward the surface.

Conveyor belt:

Another popular name for the thermohaline circulation.

Deep water formation:

The process by which very dense water near the surface sinks to near the ocean bottom at high latitudes, which forms the sinking part of the thermohaline circulation.

Bibliography

Primary Literature

  1. Charney JG, Fjortoft R, von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254

    Article  MathSciNet  ADS  Google Scholar 

  2. Bryan K, Cox MD (1967) A numerical investigation of the oceanic general circulation. Tellus 19:54–80

    Article  ADS  Google Scholar 

  3. Manabe S, Bryan K (1969) Climate calculations with a combined ocean- atmosphere model. J Atmos Sci 26:786–789

    Article  ADS  Google Scholar 

  4. Manabe S, Bryan K, Spelman MJ (1975) A global ocean-atmosphere climate model. Part I. The atmospheric circulation. J Phys Oceanogr 5:3–29

    Article  ADS  Google Scholar 

  5. Bryan K, Manabe S, Pacanowski RC (1975) A global ocean-atmosphere climate model. Part II. The oceanic circulation. J Phys Oceanogr 5:30–46

    Article  ADS  Google Scholar 

  6. Sausen R, Barthels RK, Hasselmann K (1988) Coupled ocean-atmosphere models with flux correction. Clim Dyn 2:154–163

    Article  Google Scholar 

  7. Boville BA, Gent PR (1998) The NCAR climate system model, version one. J Clim 11:1115–1130

    Article  ADS  Google Scholar 

  8. Gent PR, Bryan FO, Danabasoglu G, Doney SC, Holland WR, Large WG, McWilliams JC (1998) The NCAR climate system model global ocean component. J Clim 11:1287–1306

    Article  ADS  Google Scholar 

  9. Hirst AC, McDougall TJ (1996) Deep-water properties and surface buoyancy flux as simulated by a z-coordinate model including eddy-induced advection. J Phys Oceanogr 26:1320–1343

    Article  ADS  Google Scholar 

  10. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JF, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  11. IPCC (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Contribution of working group 1 to the 4th assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

    Google Scholar 

  12. Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci 102:11201–11206

    Article  ADS  Google Scholar 

  13. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews H, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K, Schnur R, Strassmann K, Weaver A, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model inter-comparison. J Clim 19:3337–3353

    Article  ADS  Google Scholar 

  14. Thompson DW, Baldwin MP, Solomon S (2005) Stratosphere-troposphere coupling in the southern hemisphere. J Atmos Sci 62:708–715

    Article  ADS  Google Scholar 

  15. Son SW, Polvani LM, Waugh DW, Akiyoshi H, Garcia RR, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science 320:1486–1489

    Article  ADS  Google Scholar 

  16. Steffen K, Nghiem SV, Huff R, Neumann G (2004) The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations. Geophys Res Lett 31:L20402. doi:10.1029/2004GL02044

    Article  ADS  Google Scholar 

  17. Hanna E, Huybrechts P, Steffen K, Cappelen J, Huff R, Shuman C, Irvine-Fynn T, Wise S, Griffiths M (2008) Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J Clim 21:331–341

    Article  ADS  Google Scholar 

  18. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990

    Article  ADS  Google Scholar 

  19. Joughin I, Rignot E, Rosanova CE, Lucchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island Glacier, Antarctica. Geophys Res Lett 30:1706. doi:110.1029/2003GL017609

    Article  ADS  Google Scholar 

  20. Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31:L18402. doi:10.1029/2004GL020670

    Article  ADS  Google Scholar 

  21. Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland Ice Sheets. Science 315:1529–1532

    Article  ADS  Google Scholar 

  22. Gerdes R, Hurlin W, Griffies SM (2006) Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Model 12:416–435

    Article  ADS  Google Scholar 

  23. Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland ice sheet in the 21st century. Geophys Res Lett 36:L10707. doi:10.1029/2009GL037998

    Article  ADS  Google Scholar 

  24. Gates WL, Rowntree PR, Zeng QC (1990) Validation of climate models. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the IPCC scientific assessment, Cambridge University Press, Cambridge, pp 93–130

    Google Scholar 

  25. Broecker WS (1991) The great ocean ‘conveyor’. Oceanography 4:79–89

    Article  Google Scholar 

  26. Danabasoglu G, Gent PR (2009) Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J Clim 22:2494–2499

    Article  ADS  Google Scholar 

  27. Houghton JT, Jenkins GJ, Ephramus JJ (eds) (1990) Scientific assessment of climate change. Report of working group 1 to the 1st assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

    Google Scholar 

  28. Gregory JM, Stouffer RJ, Raper SC, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. J Clim 15:3117–3121

    Article  ADS  Google Scholar 

  29. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) In: Levitus S (ed) World ocean atlas 2005, volume 1: Temperature, NOAA Atlas NESDIS 61. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  30. Johnson GC, Sloyan BM, Kessler WS, McTaggart KE (2002) Direct measurements of upper ocean currents and water properties across the tropical Pacific Ocean during the 1990’s. Prog Ocean 52:31–61

    Article  Google Scholar 

  31. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D14, 4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  32. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: Regional temperature and precipitation. Science 269:676–679

    Article  ADS  Google Scholar 

  33. Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: From a delayed oscillator to a series of events. J Clim 21:5904–5924

    Article  ADS  Google Scholar 

  34. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Nino in ocean-atmosphere general circulation models: progress and challenges. Bull Am Met Soc 90:325–340

    Article  Google Scholar 

  35. Meehl GA, Washington WM, Santer BD, Collins WD, Arblaster JM, Hu A, Lawrence DM, Teng H, Buja LE, Strand WG (2006) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19:2597–2616

    Article  ADS  Google Scholar 

  36. Holland MM, Bitz CM, Tremblay B (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23503. doi:10.1029/2006GL028024

    Article  ADS  Google Scholar 

  37. Gent PR, Bryan FO, Danabasoglu G, Lindsay K, Tsumune D, Hecht MW, Doney SC (2006) Ocean chlorofluorocarbon and heat uptake during the twentieth century in the CCSM3. J Clim 19:2366–2381

    Article  ADS  Google Scholar 

  38. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310:1674–1678

    Article  ADS  Google Scholar 

  39. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  ADS  Google Scholar 

  40. See the web site: http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html

  41. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J Geophys Res 103:14169–14240

    Article  ADS  Google Scholar 

  42. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  ADS  Google Scholar 

  43. Keenlyside N, Latif M, Junclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal climate scale prediction in the North Atlantic. Nature 453:84–88

    Article  ADS  Google Scholar 

  44. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene A, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction: Can it be skillful? Bull Am Meteorol Soc 90:1467–1485

    Article  Google Scholar 

  45. Balmaseda M, Anderson D, Vidard A (2007) Impact of Argo on analyses of the global ocean. Geophys Res Lett 34:L16605. doi:10.1029/2007/GL030452

    Article  ADS  Google Scholar 

  46. Meehl GA, Tebaldi C, Teng H, Peterson TC (2007) Current and future U.S. weather extremes and El Niño. Geophys Res Lett 34:L20704. doi:10.1029/2007GL031027

    Article  ADS  Google Scholar 

  47. Maltrud ME, McClean JL (2005) An eddy resolving global 1/100 ocean simulation. Ocean Model 8:31–54

    Article  ADS  Google Scholar 

  48. Bryan FO, Hecht MW, Smith RD (2007) Resolution convergence and sensitivity studies with North Atlantic circulation models. Part 1: The western boundary current system. Ocean Model 16:141–159

    Article  ADS  Google Scholar 

  49. Brook E, Archer D, Dlugokencky E, Frolking S, Lawrence D (2008) Potential for abrupt changes in atmospheric methane. In: Abrupt climate change. US Climate Change Science Program. US Geological Survey, Reston, pp 163–201

    Google Scholar 

  50. Dickens GR (2003) A methane trigger for rapid warming. Science 299:1017

    Article  Google Scholar 

  51. Archer D (2007) Methane hydrate stability and anthropogenic climate change. J Geophys Res Biogeo 4:521–544

    Google Scholar 

  52. Bamber GL, Riva RE, Vermeersen BL, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903

    Article  ADS  Google Scholar 

Books and Reviews

  • Griffies SM (2004) Fundamentals of ocean climate models. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Lorenz EN (1993) The essence of chaos. University of Washington Press, Seattle

    Book  MATH  Google Scholar 

  • Philander SG (1990) El Nino, La Nina, and the southern oscillation. Academic, San Diego

    Google Scholar 

  • Randall DA (ed) (2000) General circulation model development: Past, present and future. Academic, San Diego

    Google Scholar 

  • Sarachik ES, Cane MA (2010) The El-Nino-southern oscillation phenomenon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Siedler G, Church J, Gould J (eds) (2001) Ocean circulation and climate: observing and modeling the global ocean. Academic, San Diego

    Google Scholar 

  • Trenberth KE (ed) (1992) Climate system modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Washington WM, Parkinson CL (2005) An introduction to three-dimensional climate modeling, 2nd edn. University Science Books, Sausalito

    Google Scholar 

  • Wigley TM, Schimel DS (eds) (2000) The carbon cycle. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Gent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gent, P.R. (2012). Coupled Climate and Earth System Models. In: Rasch, P. (eds) Climate Change Modeling Methodology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5767-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5767-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5766-4

  • Online ISBN: 978-1-4614-5767-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics