Skip to main content

Monsoon Systems, Modeling of

  • Chapter
  • First Online:
  • 1557 Accesses

Abstract

The wordmonsoon derives fromthe Arabic word “mausim,” referring to the seasonal reversal of prevailing low-levelwinds blowing fromrelatively cold and moist ocean to warm land during the wet season (summer), and from cold and dry land to ocean during the dry season (winter).

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Aerosol:

Small particles suspended in the atmosphere in solid or liquid phase.

El Niño and Southern Oscillation (ENSO):

Two intimately linked phenomena in tropical regions; El Niño (“the Christ Child” in Spanish) refers to the significant increase in sea surface temperature that irregularly occurs during Christmas time over eastern and central Pacific Ocean; Southern Oscillation refers to the low-latitude oscillation of sea level pressure centered respectively in the eastern Pacific and the western Pacific to Indian Ocean.

General circulation model (GCM):

A computer program that solves numerically the time-dependent governing equations describing the evolution of atmospheric or oceanic circulation.

Intertropical convergence zone (ITCZ):

A longitudinally extended zone near the equator that separates the northeast wind in the Northern Hemisphere from the southeast wind in the Southern Hemisphere near the Earth’s surface.

Madden–Julian oscillation (MJO):

An oscillation of zonal wind in both the boundary layer and upper troposphere propagating eastward with an average speed of 5 m/s across equatorial Indian and western and central Pacific Ocean.

Moist static energy (MSE):

An atmospheric thermodynamic variable defined as:

$$ {\text{MSE}} = {C_p}T + gz + {L_v}q $$

Here C p is the specific heat of air, T is air temperature, g is gravity, z is height above surface or a given reference level, L v is the latent heat of water vaporization, and q is the ratio of water vapor to total air in mass.

Tropical biennial oscillation (TBO):

A zonal wind oscillation in the equatorial stratosphere.

Bibliography

Primary Literature

  1. Galvin JFP (2008) The weather and climate of the tropics: part 6 – monsoons. Weather 63:129–137

    Article  ADS  Google Scholar 

  2. Halley E (1686) A historical account of the trade winds and the monsoon, observable in the seas between and near the tropicks, with an attempt to assign the physical cause of the said winds. Phil Trans R Soc London 16:153–168

    Article  Google Scholar 

  3. Webster PJ (1987) The elementary monsoon. In: Fein JS, Stephens PL (eds) Monsoon. Wiley, New York, pp 3–32

    Google Scholar 

  4. Krishnamurti TN (1987) Monsoon models. In: Fein JS, Stephens PL (eds) Monsoon. Wiley, New York, pp 467–522

    Google Scholar 

  5. Plumb RA (2007) Dynamical constraints on monsoon circulations. In: Schneider T, Sobel AH (eds) The global circulation of the atmosphere. Princeton University Press, Princeton, pp 252–266

    Google Scholar 

  6. Blanford HF (1884) On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc R Soc London 37:3–22

    Article  Google Scholar 

  7. Hahn DG, Manabe S (1975) The role of mountains in the South Asian monsoon circulation. J Atmos Sci 32:1515–1541

    Article  ADS  Google Scholar 

  8. Boos WR, Kuang Z (2009) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–223

    Article  ADS  Google Scholar 

  9. Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159

    Article  Google Scholar 

  10. Chao WC (2000) Multiple quasi equilibria of the ITCZ and the origin of monsoon onset. J Atmos Sci 57:641–651

    Article  ADS  Google Scholar 

  11. Chao WC, Chen B (2001) The origin of monsoons. J Atmos Sci 58:3497–3507

    Article  ADS  Google Scholar 

  12. Prive NC, Plumb RA (2007a) Monsoon dynamics with interactive forcing. Part I: axisymmetric studies. J Atmos Sci 64:1417–1430

    Article  ADS  Google Scholar 

  13. Prive NC, Plumb RA (2007b) Monsoon dynamics with interactive forcing. Part II: impact of eddies and asymmetric geometries. J Atmos Sci 64:1431–1442

    Article  ADS  Google Scholar 

  14. Emanuel KA, Neelin JD, Bretherton CS (1994) On large-scale circulations in convecting atmospheres. Quart J R Meteor Soc 120:1111–1143

    Article  ADS  Google Scholar 

  15. Bordoni B, Schneider T (2008) Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nature Geos 1:515–519

    Article  ADS  Google Scholar 

  16. Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi:10.1029/2005GL022734

    Article  ADS  Google Scholar 

  17. Charney JG, Shukla J (1981) Predictability of monsoons. In: Lighthill J, Pearce RP (eds) Monsoon dynamics. Cambridge University Press, New York, pp 99–109

    Chapter  Google Scholar 

  18. Lau KM, Walsier D (2005) Intraseasonal variability in the atmosphere-ocean climate system. Springer Praxis, Chichester, 289 pp

    Google Scholar 

  19. Manabe S, Hahn DG, Holloway JL Jr (1974) The seasonal variation of the tropical circulation as simulated by a global model of the atmosphere. J Atmos Sci 31:43–83

    Article  ADS  Google Scholar 

  20. Gates WL et al (1999) An overview of the results of the atmospheric model intercomparison project (AMIP I). Bull Am Meteorol Soc 80:29–56

    Article  Google Scholar 

  21. Shen B-W, Tao W-K, Lau WK, Atlas R (2010) Improving tropical cyclogenesis prediction with a global mesoscale model: hierarchical multiscale interactions during the formation of tropical cyclone nargis (2008). J Geophys Res 115:D14102. doi:10.1029/2009JD013140

    Article  ADS  Google Scholar 

  22. Cook KH, Vizy EK (2006) Coupled model simulations of the West African monsoon system: twentieth- and twenty-first-century simulations. J Clim 19:3681–3703

    Article  ADS  Google Scholar 

  23. Krishnamurthy V, Shukla J (2007) Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J Clim 20:3–20

    Article  ADS  Google Scholar 

  24. Shukla J (1975) Effect of Arabian sea-surface temperature anomaly on Indian summer monsoon: a numerical experiment with the GFDL model. J Atmos Sci 32:503–511

    Article  ADS  Google Scholar 

  25. Lau K-M, Yang S (1996) Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J Clim 9:965–985

    Article  ADS  Google Scholar 

  26. Meehl GA, Arblaster JM, Lawrence D, Seth A, Schneider EK, Kirtman BP, Min D (2006) Monsoon regimes in the CCSM3. J Clim 19:2482–2495

    Article  ADS  Google Scholar 

  27. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections, in climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  28. Meehl GA (1994) Coupled land-ocean-atmosphere processes and South Asian monsoon variability. Science 266:263–267

    Article  ADS  Google Scholar 

  29. Meehl GA, Arblaster JM (2002) Indian monsoon GCM sensitivity experiments testing tropospheric biennial oscillation transition conditions. J Clim 15:923–944

    Article  ADS  Google Scholar 

  30. Shukla J (2007) Monsoon mysteries. Science 318:204–205

    Article  Google Scholar 

  31. Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092

    Article  ADS  Google Scholar 

  32. Xue YK et al. (2010) Intercomparision and analyses of the West African monsoon in the West African monsoon model evaluation (WAMME) project: first model intercomparison experiment. Climate Dynamics 35:3–27. doi:10.1007/s00382-010-0778-2

    Article  ADS  Google Scholar 

  33. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  ADS  Google Scholar 

  34. Lau KM, Kim MK, Kim KM (2006) Asian monsoon anomalies induced by aerosol direct effects. Clim Dyn 26:855–864. doi:10.1007/s00382-006-0114-z

    Article  Google Scholar 

  35. Lu R, Fu Y (2010) Intensification of East Asian summer rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled models. J Clim 23:3316–3331

    Article  ADS  Google Scholar 

  36. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impact on South Asian climate and hydrologic cycle. Proc Natl Acad Sci USA 102:5326–5333

    Article  ADS  Google Scholar 

  37. Ramesh KV, Goswami P (2007) Reduction in temporal and spatial extent of the Indian summer monsoon. Geophys Res Lett 34:L23704. doi:10.1029/2007GL031613

    Article  ADS  Google Scholar 

  38. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    Article  ADS  Google Scholar 

  39. Wang C (2004) A modeling study on the climate impacts of black carbon aerosols. J Geophys Res 109:D03106. doi:10.1029/2003JD004084

    Article  Google Scholar 

  40. Roberts DL, Jones A (2004) Climate sensitivity to black carbon aerosol from fossil fuel combustion. J Geophys Res 109:D16202. doi:10.1029/2004JD004676

    Article  ADS  Google Scholar 

  41. Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res 110:D11102. doi:10.1029/2004JD005441

    Article  ADS  Google Scholar 

  42. Lau K-M, Ramanathan V, Wu G-X, Li Z, Tray SC, Hsu C, Sikka R, Holben B, Lu D, Tartari G, Chin M, Koudelova P, Chen H, Ma Y, Huang J, Taniguchi K, Zhang R (2008) The joint aerosol-monsoon experiment, a new challenge for monsoon climate research. Bull Am Meteorol Soc 89:369–383

    Article  Google Scholar 

  43. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  ADS  Google Scholar 

  44. Wang C (2007) Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys Res Lett 34:L05709. doi:10.1029/2006GL028416

    Article  Google Scholar 

  45. Randles CA, Ramaswamy V (2008) Absorbing aerosols over Asia: a geophysical fluid dynamics laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. J Geophys Res 113:D21203. doi:10.1029/2008JD010140

    Article  ADS  Google Scholar 

  46. Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim 21:2869–2882. doi:10.1175/2007JCLI1777.1

    Article  ADS  Google Scholar 

  47. Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  ADS  Google Scholar 

  48. Bollasina M, Nigam S, Lau K-M (2008) Absorbing aerosols and summer monsoon evolution over South Asia: an observational portrayal. J Clim 21:3221–3239

    Article  ADS  Google Scholar 

  49. Gautam R, Hsu NC, Lau K-M, Tsay S-C, Kafatos M (2009) Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys Res Lett 36:L07704. doi:10.1029/2009GL037641

    Article  Google Scholar 

  50. Wang C, Kim D, Ekman AML, Barth MC, Rasch PJ (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett 36:L21704. doi:10.1029/2009GL040114

    Article  ADS  Google Scholar 

  51. Carlson TN, Prospero JM (1972) The large-scale movement of Saharan air outbreaks over the Northern equatorial Atlantic. J Appl Meteor 11:283–297

    Article  Google Scholar 

  52. Prospero JM, Lamb JP (2003) African droughts and dust transport to the Caribbean: climate change and implications. Science 302:1024–1027

    Article  ADS  Google Scholar 

  53. Dwyer E, Pinnock S, Gregoire JM, Pereira JMC (2000) Global spatial and temporal distribution of vegetation fire as determined from satellite observations. Int J Rem Sens 21:1289–1302

    Article  Google Scholar 

  54. Duncan BN, Martin RV, Staudt AC, Yevich R, Logan JA (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res 108:4100. doi:10.1029/2002JD002378

    Article  Google Scholar 

  55. Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Global Biogeochem Cy 19:GB2028. doi:10.1029/2004GB002374

    Article  ADS  Google Scholar 

  56. Huang J, Zhang C, Prospero JM (2009) African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic ocean. J Geophys Res 115:D05202. doi:10.1029/2009JD012516

    Article  Google Scholar 

  57. Huang J, Zhang C, Prospero JM (2009) Large-scale effects of aerosols on precipitation in the West African monsoon region. Q J R Meteorol Soc 135:581–594

    Article  Google Scholar 

  58. Huang J, Zhang C, Prospero JM (2009) African aerosol and large-scale precipitation variability over West Africa. Environ Res Lett 4:015006. doi:10.1088/1748-9326/4/1/015006

    Article  ADS  Google Scholar 

  59. Huang J, Adams A, Wang C, Zhang C (2009) Black carbon and West African monsoon precipitation: observations and simulations. Ann Geophys 27:4171–4181

    Article  ADS  Google Scholar 

  60. Eltahir E, Gong C (1996) Dynamics of wet and dry years in West Africa. J Climate 9:1030–1042

    Article  ADS  Google Scholar 

  61. Lau KM, Kim KM, Sud YC, Walker GK (2009) A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann Geophys 27:4023–4037, http://www.ann-geophys.net/27/4023/2009/

    Article  ADS  Google Scholar 

  62. Kim KM, Lau KM, Sud YC, Walker GK (2010) Influence of aerosol-radiative forcing on the diurnal and seasonal cycles of rainfall over West Africa and the Eastern Atlantic using GCM simulations. Clim Dyn. doi:10.1007/s00382-010-0750-1

  63. Wilcox E, Lau WKM, Kim KM (2010) A northward shift of the Inter-tropical convergence zone in response to summertime Saharan dust outbreak. Geophys Res Lett 37:L04804. doi:10.1029/2009GL041774

    Article  Google Scholar 

  64. Rotstayn LD, Cai W, Dix MR, Farquhar GD, Feng Y, Ginoux P, Herzog M, Ito A, Penner JE, Roderick ML, Wang M (2007) Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols? J Geophys Res 112:D09202. doi:10.1029/2006JD007712

    Article  Google Scholar 

  65. Cai W, Cowan T, Sullivan A, Ribbe J, Shi G (2011) Are anthropogenic aerosols responsible for the Northwest Australia summer rainfall increase? A CMIP3 perspective and implications. J Climate 24:2556–2564. doi:10.1175/2010JCLI3832.1

    Article  Google Scholar 

  66. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  ADS  Google Scholar 

  67. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093

    Article  ADS  Google Scholar 

  68. Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322:940–942

    Article  ADS  Google Scholar 

  69. Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian Southwest monsoon during the past four centuries. Science 297:596–599

    Article  ADS  Google Scholar 

  70. Goes JI, Thoppil PG, Gomes HDR, Fasullo JT (2005) Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 308:545–547

    Article  ADS  Google Scholar 

  71. Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res 114:D10109. doi:10.1029/2008JD010572

    Article  ADS  Google Scholar 

  72. Lau KM, Kim K-M (2010) Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys Res Lett 37:L16705. doi:10.1029/2010GL043255

    Article  ADS  Google Scholar 

  73. Shanahan TM, Overpeck JT, Anchukaitis KJ, Beck JW, Cole JE, Dettman DL, Peck JA, Scholz CA, King JW (2009) Atlantic forcing of persistent drought in West Africa. Science 324:377–380

    Article  ADS  Google Scholar 

  74. Patricola CM, Cook KH (2007) Dynamics of the West African monsoon under mid-Holocene precessional forcing: regional climate model simulations. J Clim 20:694–716

    Article  ADS  Google Scholar 

  75. Takata K, Saito K, Yasunari T (2009) Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proc Natl Acad Sci USA 106:9586–9589

    Article  ADS  Google Scholar 

  76. Meehl GA, Washington WM (1993) South Asian summer monsoon variability in a model with doubled atmospheric carbon dioxide concentration. Science 260:1101–1104

    Article  ADS  Google Scholar 

  77. Biasutti M, Held IM, Sobel AH, Giannini A (2008) SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J Clim 21:3471–3486

    Article  ADS  Google Scholar 

Books and Reviews

  • Fein JS, Stephens PL (1987) Monsoon. Wiley, New York

    Google Scholar 

  • Lighthill J, Pearce RP (eds) (1981) Monsoon dynamics. Cambridge University Press, New York

    Google Scholar 

  • Wang B (2006) East Asian monsoon. Springer/Praxis, Chichester

    Google Scholar 

  • Webster PJ, Magana VO, Palme TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chien Wang or William K. M. Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, C., Lau, W.K.M. (2012). Monsoon Systems, Modeling of. In: Rasch, P. (eds) Climate Change Modeling Methodology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5767-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5767-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5766-4

  • Online ISBN: 978-1-4614-5767-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics