Skip to main content

Ecological and Health Risks at Low Doses

  • Chapter
  • First Online:

Abstract

The concept of “dose makes the poison” has been attributed to Paracelsus who lived in the 1500s. The goal of much of modern toxicology and pharmacology has since been to define the precise biological factors that dictate the relationship between dose and response following exposure to chemicals. One of the major challenges in risk assessment more recently appreciated is the difficulty in predicting with statistical certainty adverse effects at low doses when the probability of response in a population is low [1]. The nature of the risks at low doses may be qualitatively different from the nature of the risks at high doses. In other words, the risk at low doses is not just a smaller version of the risk at high doses, because the mechanism(s) responsible for the risk at low doses is often different.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Acclimation:

A decline in response with previous exposure.

Adaptation:

Physiological changes that increase the fitness of a population in response to chronic exposure.

Epigenetic:

Mechanisms of altered gene expression that do not change primary DNA sequence.

Hormesis:

A beneficial effect from a low dose of a “poison” or contaminant.

NOAEL:

No-observed-adverse-effect level is the highest treatment level from which the response does not differ statistically from control groups.

Threshold dose:

Dose required to produce a measurable response.

Bibliography

Primary Literature

  1. Andersen ME, Thomas RS, Gaido KW, Conolly RB (2005) Dose-response modeling in reproductive toxicology in the systems biology era. Reprod Toxicol 19:327–337

    Article  PubMed  CAS  Google Scholar 

  2. Krieger WC (2001) Paracelsus dose response. In: Krieger WC (ed) Handbook of pesticide toxicology. Academic, New York

    Google Scholar 

  3. Ballantyne C (2007) Strange but true: drinking too much water can kill. Scientific American June 21, 2007. http://www.scientificamerican.com/article.cfm?id=strange-but-true-drinking-too-much-water-can-kill&print=true. Accessed 24 January 2010

  4. Zeise L, Wilson R, Crouch EA (1987) Dose-response relationships for carcinogens: a review. Environ Health Perspect 73:259–306

    Article  PubMed  CAS  Google Scholar 

  5. Conolly RB, Lutz WK (2004) Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci 77:151–157

    Article  PubMed  CAS  Google Scholar 

  6. Lutz WK (1990) Dose-response relationship and low dose extrapolation in chemical carcinogenesis. Carcinogenesis 11:1243–1247

    Article  PubMed  CAS  Google Scholar 

  7. Swenberg JA, Fryar-Tita E, Jeong YC, Boysen G, Starr T, Walker VE, Albertini RJ (2008) Biomarkers in toxicology and risk assessment: informing critical dose-response relationships. Chem Res Toxicol 21:253–265

    Article  PubMed  Google Scholar 

  8. Calabrese EJ (2009) The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment. Arch Toxicol 83:203–225

    Article  PubMed  CAS  Google Scholar 

  9. Sand S, Victorin K, Filipsson AF (2008) The current state of knowledge on the use of the benchmark dose concept in risk assessment. J Appl Toxicol 28:405–421

    Article  PubMed  CAS  Google Scholar 

  10. Calabrese EJ, Baldwin LA (2001) Hormesis: a generalizable and unifying hypothesis. Crit Rev Toxicol 31:353–424

    Article  PubMed  CAS  Google Scholar 

  11. Andersen ME, Dennison JE, Thomas RS, Conolly RB (2005) New directions in incidence-dose modeling. Trends Biotechnol 23:122–127

    Article  PubMed  CAS  Google Scholar 

  12. Borgert CJ, Quill TF, McCarty LS, Mason AM (2004) Can mode of action predict mixture toxicity for risk assessment? Toxicol Appl Pharmacol 201:85–96

    Article  PubMed  CAS  Google Scholar 

  13. Rozman KK, Doull J (2003) Scientific foundations of hormesis. Part 2. Maturation, strengths, limitations, and possible applications in toxicology, pharmacology, and epidemiology. Crit Rev Toxicol 33:451–462

    Article  PubMed  Google Scholar 

  14. Stebbing AR (2003) Adaptive responses account for the beta-curve-hormesis is linked to acquired tolerance. Nonlinearity Biol Toxicol Med 1:493–511

    Article  PubMed  CAS  Google Scholar 

  15. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SI, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 222:122–128

    Article  PubMed  CAS  Google Scholar 

  16. Parkinson A, Ogilvie BW (2008) Biotransformation of xenobiotics. In: Klaassen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons. McGraw Hill, New York, pp 161–304

    Google Scholar 

  17. Zhang Q, Pi J, Woods CG, Andersen ME (2009) Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses. Toxicol Appl Pharmacol 237:345–356

    Article  PubMed  CAS  Google Scholar 

  18. Hamilton SJ, Mehrle PM (1986) Metallothionein in fish: review of its importance in assessing stress from metal contaminants. Trans Am Fish Soc 115:596–609

    Article  CAS  Google Scholar 

  19. Meyer JN, DiGiulio RT (2003) Heritable adaptation and fitness costs in killifish (Fundulus heteroclitus) inhabiting a polluted estuary. Ecol Adapt 13:490–503

    Article  Google Scholar 

  20. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  PubMed  CAS  Google Scholar 

  21. Anway MD, Skinner MK (2006) Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147:S43–S49

    Article  PubMed  CAS  Google Scholar 

  22. Gabory A, Attig L, Junien C (2009) Sexual dimorphism in environmental epigenetic programming. Mol Cell Endocrinol 304:8–18

    Article  PubMed  CAS  Google Scholar 

  23. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  24. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  PubMed  CAS  Google Scholar 

  25. Connors SL, Levitt P, Matthews SG, Slotkin TA, Johnston MV, Kinney HC, Johnson WG, Dailey RM, Zimmerman AW (2008) Fetal mechanisms in neurodevelopmental disorders. Pediatr Neurol 38:163–176

    Article  PubMed  Google Scholar 

  26. Weiss B, Cory-Slechta D, Gilbert SG, Mergler D, Miller E, Miller C, Newland MC, Rice D, Schettler T (2008) The new tapestry of risk assessment. Neurotoxicology 29:883–890

    Article  PubMed  CAS  Google Scholar 

  27. National Toxicology Program (2001) National toxicology program’s report of the endocrine disruptors low-dose peer review. NTP Office of Liaison and Scientific Review, Research Triangle Park

    Google Scholar 

  28. Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  PubMed  CAS  Google Scholar 

  29. Lewis EB (1957) Leukemia and ionizing radiation. Science 125:965–972

    Article  PubMed  CAS  Google Scholar 

  30. Goodhead DT (2010) New radiobiological, radiation risk and radiation protection paradigms. Mutat Res 687(1–2):13–16

    PubMed  CAS  Google Scholar 

  31. Hoffmann G, Stempsey W (2008) The hormesis concept and risk assessment: are there unique ethical and policy considerations? Hum Exp Toxicol 27:613–620

    Article  PubMed  Google Scholar 

  32. EPA US (2005) Guidelines for carcinogen risk assessment. US EPA, Washington DC

    Google Scholar 

  33. Bailey GS, Reddy AP, Pereira CB, Harttig U, Baird W, Spitsbergen JM, Hendricks JD, Orner GA, Williams DE, Swenberg JA (2009) Nonlinear cancer response at ultralow dose: a 40800-animal ED (001) tumor and biomarker study. Chem Res Toxicol 22:1264–1276

    Article  PubMed  CAS  Google Scholar 

  34. Tong S, von Schirnding YE, Prapamontol T (2000) Environmental lead exposure: a public health problem of global dimensions. Bull World Health Organ 78:1068–1077

    PubMed  CAS  Google Scholar 

  35. Liu J, Goyer RA, Waalkes MP (2008) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons. McGraw Hill, New York, pp 931–979

    Google Scholar 

  36. Landrigan PJ (2000) Pediatric lead poisoning: is there a threshold? Public Health Rep 115:530–531

    Article  PubMed  CAS  Google Scholar 

  37. Toscano CD, Guilarte TR (2005) Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev 49:529–554

    Article  PubMed  CAS  Google Scholar 

  38. Counter SA, Vahter M, Laurell G, Buchanan LH, Ortega F, Skerfving S (1997) High lead exposure and auditory sensory-neural function in Andean children. Environ Health Perspect 105:522–526

    Article  PubMed  CAS  Google Scholar 

  39. CDC (2005) Blood lead levels – United States, 1999–2002. MMWR 54:513–516

    Google Scholar 

  40. Bellinger D, Leviton A, Waternaux C, Needleman H, Rabinowitz M (1987) Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. N Engl J Med 316:1037–1043

    Article  PubMed  CAS  Google Scholar 

  41. Lanphear BP, Dietrich K, Auinger P, Cox C (2000) Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep 115:521–529

    Article  PubMed  CAS  Google Scholar 

  42. Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med 348:1517–1526

    Article  PubMed  CAS  Google Scholar 

  43. Rogan WJ, Dietrich KN, Ware JH, Dockery DW, Salganik M, Radcliffe J, Jones RL, Ragan NB, Chisolm JJ Jr, Rhoads GG (2001) The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med 344:1421–1426

    Article  PubMed  CAS  Google Scholar 

  44. White RF, Diamond R, Proctor S, Morey C, Hu H (1993) Residual cognitive deficits 50 years after lead poisoning during childhood. Br J Ind Med 50:613–622

    PubMed  CAS  Google Scholar 

  45. Costa LG (2008) Toxic effects of pesticides. In: Klaassen CD (ed) Casarett & Doull’s toxicology: the basic science of poisons. McGraw Hill, New York, pp 883–930

    Google Scholar 

  46. EPA US (2002) Interim reregistration eligibility decision for chlorpyrifos. US EPA, Washington DC, pp 1–235

    Google Scholar 

  47. Whyatt RM, Barr DB, Camann DE, Kinney PL, Barr JR, Andrews HF, Hoepner LA, Garfinkel R, Hazi Y, Reyes A, Ramirez J, Cosme Y, Perera FP (2003) Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ Health Perspect 111:749–756

    Article  PubMed  CAS  Google Scholar 

  48. Aldridge JE, Meyer A, Seidler FJ, Slotkin TA (2005) Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect 113:1027–1031

    Article  PubMed  CAS  Google Scholar 

  49. Roy TS, Sharma V, Seidler FJ, Slotkin TA (2005) Quantitative morphological assessment reveals neuronal and glial deficits in hippocampus after a brief subtoxic exposure to chlorpyrifos in neonatal rats. Brain Res Dev Brain Res 155:71–80

    Article  PubMed  CAS  Google Scholar 

  50. Slotkin TA, Seidler FJ (2005) The alterations in CNS serotonergic mechanisms caused by neonatal chlorpyrifos exposure are permanent. Brain Res Dev Brain Res 158:115–119

    Article  PubMed  CAS  Google Scholar 

  51. Levin ED, Addy N, Baruah A, Elias A, Christopher NC, Seidler FJ, Slotkin TA (2002) Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol 24:733–741

    Article  PubMed  CAS  Google Scholar 

  52. Meyer A, Seidler FJ, Slotkin TA (2004) Developmental effects of chlorpyrifos extend beyond neurotoxicity: critical periods for immediate and delayed-onset effects on cardiac and hepatic cell signaling. Environ Health Perspect 112:170–178

    Article  PubMed  CAS  Google Scholar 

  53. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118:e1845–e1859

    Article  PubMed  Google Scholar 

  54. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    Article  PubMed  CAS  Google Scholar 

  55. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44

    Article  PubMed  CAS  Google Scholar 

  56. Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposures III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147:S56–S69

    Article  PubMed  CAS  Google Scholar 

  57. Markey CM, Michaelson CL, Veson EC, Sonnenschein C, Soto AM (2001) The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ Health Perspect 109:55–60

    Article  PubMed  CAS  Google Scholar 

  58. Markey CM, Luque EH, De Munoz TM, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65:1215–1223

    PubMed  CAS  Google Scholar 

  59. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148:116–127

    Article  PubMed  CAS  Google Scholar 

  60. Farabollini F, Porrini S, Della SD, Bianchi F, Dessi-Fulgheri F (2002) Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environ Health Perspect 110(Suppl 3):409–414

    Article  PubMed  CAS  Google Scholar 

  61. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224

    Article  PubMed  CAS  Google Scholar 

  62. Vom Saal FS, Richter CA, Ruhlen RR, Nagel SC, Timms BG, Welshons WV (2005) The importance of appropriate controls, animal feed, and animal models in interpreting results from low-dose studies of bisphenol A. Birth Defects Res A Clin Mol Teratol 73:140–145

    Article  PubMed  CAS  Google Scholar 

  63. vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, Farabollini F, Guillette LJ Jr, Hauser R, Heindel JJ, Ho SM, Hunt PA, Iguchi T, Jobling S, Kanno J, Keri RA, Knudsen KE, Laufer H, LeBlanc GA, Marcus M, McLachlan JA, Myers JP, Nadal A, Newbold RR, Olea N, Prins GS, Richter CA, Rubin BS, Sonnenschein C, Soto AM, Talsness CE, Vandenbergh JG, Vandenberg LN, Walser-Kuntz DR, Watson CS, Welshons WV, Wetherill Y, Zoeller RT (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24:131–138

    Article  PubMed  CAS  Google Scholar 

  64. National Toxicology Program (2007) NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. In: Center for the Evaluation of Risks to Human Reproduction (ed) National toxicology program, pp 1–396

    Google Scholar 

  65. National Toxicology Program (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. In: Center for the Evaluation of Risks to Human Reproduction (ed) National toxicology program, pp 1–321

    Google Scholar 

  66. US FDA (2010) Update on Bisphenol A for use in food contact applications. In: FDA (ed) US food and drug administration, pp 1–7

    Google Scholar 

  67. Briggs D (2003) Making a difference: indicators to improve children’s environmental health. World Health Organization, Geneva, pp 1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine L. Willett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willett, K.L., Foran, C.M. (2013). Ecological and Health Risks at Low Doses. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_8

Download citation

Publish with us

Policies and ethics