Skip to main content

Science, Policy, and Risk Management: Case of Seafood Safety

  • Chapter
  • First Online:

Abstract

In order to function properly, the human body needs a wide range of essential nutrients, which it gets from food that is ingested on a daily basis. Unfortunately, food also represents a vector for harmful creatures (bacterial, viral, protozoan pathogens) and chemical substances (organic toxins as well as toxic metals and various environmental contaminants). According to the most recent surveys of the Center for Science for Public Interest (CSPI), for more than a decade now, seafood has ranked first as the most likely source of foodborne disease outbreaks of established origin [2, 3].

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Action levels:

“Action levels and tolerances represent limits at or above which the FDA will take legal action to remove products from the market” – FDA.

An outbreak:

Involves two or more ill people – CSPI.

Biological contaminants:

In the context of this document, these are pathogenic microorganisms (bacteria, viruses, and parasites) found in seafood.

Chemical contaminants:

In the context of this entry, are regrouped under this denomination, all nonbiological contaminants (deleterious chemicals) traceable to seafood.

Environmental pollutants:

Seafood-associated deleterious substances traceable to the environment such as heavy metals and persistent organic pollutants.

Etiological agent:

A microorganism responsible for a given disease.

Food safety hazards:

According to the Seafood HACCP Regulation, a “food safety hazard” is “any biological, chemical, or physical property that may cause food to be unsafe for human consumption.”

Seafood:

Edible marine plants and animals (fish and shellfish) are usually grouped under the denomination of seafood in some contexts, these are referred to as “fish and fishery products” [1]. This same term is often given a broader meaning: all edible aquatic plants and animals.

Seafood-associated toxins:

Harmful chemical substances produced either by seafood-associated bacterial contaminants, cyanobacteria, or toxic microscopic algae (dinoflagellates and diatoms) on which seafood feed.

Tolerance threshold:

Maximum allowable amount of ubiquitous deleterious substance in seafood.

Bibliography

Primary Literature

  1. Appendix 5 – FDA & EPA Safety Levels in Regulations and Guidance Fish and Fisheries Products Hazards and Controls Guidance

    Google Scholar 

  2. Outbreak Alert 2008, http://www.cspinet.org/new/pdf/outbreak_alert_2008_report_final.pdf

  3. Outbreak Alert 2009, http://cspinet.org/new/pdf/outbreakalertreport09.pdf

  4. Fish and Seafood Utilization, http://www.fao.org/fishery/topic/424/en

  5. What You Need to Know About Mercury in Fish and Shellfish March 2004, EPA-823-R-04-005, http://www.fda.gov/food/resourcesforyou/consumers/ucm110591.htm

  6. Naliwaiko K, Araújo RL, da Fonseca RV, Castilho JC, Andreatini R, Bellissimo MI, Oliveira BH, Martins EF, Curi R, Fernandes LC, Ferraz AC (2004) Effects of fish oil on the central nervous system: a new potential antidepressant. Nutr Neurosci 7:91–99

    Article  PubMed  CAS  Google Scholar 

  7. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60:940–946

    Article  PubMed  Google Scholar 

  8. Barberger-Gateau P, Letenneur L, Deschamps V, Pérès K, Dartigues JF, Renaud S (2002) Fish, meat, and risk of dementia: cohort study. BMJ 325:932–933

    Article  PubMed  Google Scholar 

  9. Food is getting healthier and better, thanks to EU research, http://europa.eu/rapid/pressReleasesAction.do?reference=IP/06/1759&format=HTML&aged=0&language=EN&guiLanguage=en

  10. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H et al (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomized open-label, blinded endpoint analysis. Lancet 369:1090–1098

    Article  PubMed  CAS  Google Scholar 

  11. Cohen JT, Bellinger DC, Connor WE, Kris-Etherton PM, Lawrence RS (2005) A quantitative risk-benefit analysis of changes in population fish consumption. Am J Prev Med 29:325–334

    Article  PubMed  Google Scholar 

  12. Mozaffarian D, Longstreth WTJ, Lemaitre RN, Manolio TA, Kuller LH, Burke GL, Siscovick DS (2005) Fish consumption and stroke risk in elderly individuals: the cardiovascular health study. Arch Intern Med 165:200–206

    Article  PubMed  Google Scholar 

  13. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296:1885–1899

    Article  PubMed  CAS  Google Scholar 

  14. Fish & Fish Products Market Report 2008, http://www.researchandmarkets.com/reportinfo.asp?cat_id=0&report_id=597257&q=seafoodmarket&p=1

    Google Scholar 

  15. Food Outlook – Global Market Analysis – Global Information and Early Warning System on Food and Agriculture, http://www.fao.org/docrep/012/ak341e/ak341e00.htm

  16. Food Outlook – Global Market Analysis, http://www.fao.org/docrep/010/ai466e/ai466e00.HTM

  17. Delgado CL, Wada N, Rosegrant MW, Meijer S, Ahmed M (2003) Outlook for fish to 2020: meeting global demand. International Food Policy Research Institute and The WorldFish Center, Washington, DC

    Google Scholar 

  18. Review of the State of World Marine Fishery Resources Food and Agriculture Organization of the United Nations, FAO FISHERIES TECHNICAL PAPER 457, http://www.fao.org/docrep/009/y5852e/Y5852E00.htm#TOC

  19. Food-Related Illness and Death in the United States, http://www.cdc.gov/ncidod/EID/vol5no5/mead.htm

  20. Report to Congress Food and Drug Administration Amendments Act of 2007 Public Law 110-85 Section 1006 – Enhanced Aquaculture and Seafood Inspection. Enhanced Aquaculture and Seafood Inspection – Report to Congress, http://www.fda.gov/Food/FoodSafety/Product-SpecificInformation/Seafood/SeafoodRegulatoryProgram/ucm150954.htm

  21. Campas M, Beatriz PS, Jean-Louis M (2007) Biosensors to detect marine toxins: assessing seafood safety. Talanta 72:884–895

    Article  PubMed  CAS  Google Scholar 

  22. Fleming LE, Broad K, Clement A, Dewailly E, Elmir S, Knap A, Pomponi SA, Smith S, Gabriele HS, Walsh P (2006) Oceans and human health: emerging public health risks n the marine environment. Mar Pollut Bull 53:545–560

    Article  PubMed  CAS  Google Scholar 

  23. Marine Toxins, http://www.cdc.gov/ncidod/dbmd/diseaseinfo/marinetoxins_g.htm

  24. Marine Biotoxins, http://www.fao.org/docrep/007/y5486e/y5486e00.HTM

  25. BBB – Various Shellfish-Associated Toxins-Bad Bug Book: Foodborne Pathogenic Microorganisms and Natural Toxins Handbook Various Shellfish-Associated Toxins, http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm070008.htm

  26. Assurance of Seafood Quality, http://www.fao.org/docrep/003/t1768e/T1768E00.htm#TOC

  27. Clark RF, Williams SR, Nordt SP, Manoguerra AS (1999) A review of selected seafood poisonings. Undersea Hyperb Med 26:175–184

    PubMed  CAS  Google Scholar 

  28. Assessment and Management of Seafood Safety and Quality, http://www.fao.org/docrep/006/y4743e/y4743e00.htm#Contents

  29. Brief review of natural nonprotein neurotoxins, Applied science and analysis Inc., http://www.asanltr.com/newsletter/02-2/articles/Neurotoxins.htm

  30. García C, Pereira P, Valle L, Lagos N (2003) Quantitation of diarrhetic shellfish poisoning toxins in Chilean Mussel using pyrenyldiazomethane as fluorescent labeling reagent. Biol Res 36:171–183

    Article  PubMed  Google Scholar 

  31. Fernández-Ortega JF, Morales-de los Santos JM, Herrera-Gutiérrez ME, Fernández-Sánchez V, Loureo PR, Rancaño AA, Téllez-Andrade A (2010) Seafood intoxication by tetrodotoxin: first case in Europe. J Emerg Med 39(5):612–617

    Article  PubMed  Google Scholar 

  32. Hwang DF, Noguchi T (2007) Tetrodotoxin poisoning. Adv Food Nutr Res 52:141–236

    Article  PubMed  CAS  Google Scholar 

  33. Bachvaroff TR, Adolf JE, Squier AH, Harvey HR, Place AR (2008) Characterization and quantification of karlotoxins by liquid chromatography-mass spectrometry. Harmful Algae 7:473–484

    Article  CAS  Google Scholar 

  34. Van Wagoner RM, Deeds JR, Satake M, Ribeiro AA, Place AR, Wright JLC (2008) Isolation and characterization of karlotoxin 1, a new amphipathic toxin from Karlodinium veneficum. Tetrahedron Lett 49:6457–6461

    Article  PubMed  CAS  Google Scholar 

  35. Van Wagoner RM, Deeds JR, Tatters AO, Place AR, Tomas CR, Wright JLC (2010) Structure and relative potency of several Karlotoxins from Karlodinium veneficum. J Nat Prod 73(8):1360–1365

    Article  PubMed  CAS  Google Scholar 

  36. Peng J, Place AR, Yoshida W, Anklin C, Hamann MT (2010) Structure and absolute configuration of Karlotoxin-2, an Ichthyotoxin from the marine Dinoflagellate Karlodinium veneficum. J Am Chem Soc 132:3277–3279

    Article  PubMed  CAS  Google Scholar 

  37. Abbott BC, Ballantine D (1957) The toxin from Gymnodinium veneflcum Ballantine. J Mar Biol Assoc UK 36

    Google Scholar 

  38. Adolf JE, Bachvaroff TR, Krupatkina DN, Nonogaki H, Brown PJP, Lewitus AJ, Harvey HR, Place AR (2006) Species specificity and potential roles of Karlodinium micrum toxinAfr. J Mar Sci XI HAB Proc 28:177–180

    Google Scholar 

  39. Sheng J, Malkiel E, Katz J, Adolf JE, Place AR (2010) A dinoflagellate exploits toxins to immobilize prey prior to ingestion. PNAS 107:2082–2087

    Article  PubMed  CAS  Google Scholar 

  40. Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558

    Article  PubMed  Google Scholar 

  41. Feldhusen F (2000) The role of seafood in bacterial foodborne diseases. Microb Infect 2:1651–1660

    Article  CAS  Google Scholar 

  42. Andrews LS, DeBlanc S, Veal CD, Park DL (2003) Response of Vibrio parahaemolyticus O3: K6 to a hot water/cold shock pasteurization process. Food Add Contam 20:331–334

    Article  CAS  Google Scholar 

  43. Interstate Shellfish Sanitation Conference Vibrio vulnificus fact sheet- Health care providers, http://www.issc.org/client_resources/Education/VvFactSheet.pdf

  44. Samir M, Haq BS, Hari HD (2005) Chronic liver disease and consumption of raw oysters: a potentially lethal combination – a review of Vibrio vulnificus septicemia. Am J Gastroenterol 100:1195–1199

    Article  Google Scholar 

  45. Norhana MNW, Poole SE, Deeth HC, Dykes GA (2010) Prevalence, persistence and control of Salmonella and Listeria in shrimp and shrimp products: a review. Food Control 21:343–361

    Article  Google Scholar 

  46. Committee on Evaluation of the Safety of Fishery Products. Seafood Safety (1991) Institute of Medicine (IOM). Food and Nutrition Board Institute of Medicine, http://www.nap.edu/openbook.php?record_id=1612&page=30

  47. Potasman I, Paz A, Odeh M (2002) Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin Infect Dis 35:921–928

    Article  PubMed  Google Scholar 

  48. Halliday ML, Kang LY, Zhou TK, Hu MD, Pan QC, Fu TY, Huang YS, Hu SLl (1991) An epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J Infect Dis 164:852–859

    Article  PubMed  CAS  Google Scholar 

  49. Norovirus: Technical Fact Sheet, http://www.cdc.gov/ncidod/dvrd/revb/gastro/norovirus-factsheet.htm

  50. Kar D, Sur P, Mandal SK, Saha T, Kole RK (2008) Assessment of heavy metal pollution in surface water. Int J Environ Sci Tech 5:119–124

    CAS  Google Scholar 

  51. Heavy Metal Pollution – Heavy Metal Pollution is More Common Than You Think, http://www.fairfaxcounty.gov/nvswcd/newsletter/heavymetal.htm

  52. Scientific Opinion on Arsenic in Food Question number: EFSA-Q 2008-425, http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902959840.htm

  53. Daniels JL, Longnecker MP, Rowland AS, Golding J (2004) Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 15:394–402

    Article  PubMed  Google Scholar 

  54. Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gillman MW (2005) Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ Health Perspect 113:1376–1380

    Article  PubMed  CAS  Google Scholar 

  55. Myers GJ, Davidson PW, Cox C, Shamlaye CF, Palumbo D, Cernichiari E, Sloane-Reeves JW GE, Kost J, Huang LS, Clarkson TW (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 361:1686–1692

    Article  PubMed  CAS  Google Scholar 

  56. Smith AG, Gangolli SD (2002) Organochlorine chemicals in seafood: occurrence and health concerns. Food Chem Tox 40:767–779

    Article  CAS  Google Scholar 

  57. Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ (2004) Global assessment of organic contaminants in farmed salmon. Science 303:226–229

    Article  PubMed  CAS  Google Scholar 

  58. Willett WC (2005) Fish: balancing health risks and benefits. Am J Prev Med 29:320–321

    Article  PubMed  Google Scholar 

  59. How FDA Regulates Seafood: FDA Detains Imports of Farm-Raised Chinese Seafood, http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm094558.htm

  60. Gerssen A, Mulder PPJ, McElhinney MA, de Boer J (2009) Liquid chromatography-tandem mass spectrometry method for the detection of marine lipophilic toxins under alkaline conditions. J Chromatogr A 1216:1421–1430

    Article  PubMed  CAS  Google Scholar 

  61. Syaifudin ARM, Jayasundera KP, Mukhopadhyay SC (2009) A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sens Actuators B 137:67–75

    Article  Google Scholar 

  62. Zhou Y, Li YS, Pan FG, Zhang YY, Lu SY, Ren HL, Li ZH, Liu ZS, Zhang JH (2010) Development of a new monoclonal antibody based direct competitive enzyme-linked immunosorbent assay for detection of brevetoxins in food samples. Food Chem 118:467–471

    Article  CAS  Google Scholar 

  63. Önal A (2007) Analytical, nutritional and clinical methods a review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103:1475–1486

    Article  Google Scholar 

  64. BY PRJB, Rutgers P, Stolker AAM, Nielen MWF (2009) Multi-residue screening of veterinary drugs in egg, fish and meat using high-resolution liquid chromatography accurate mass time-of-flight mass spectrometry. J Chromat A 1216:8206–8216

    Article  Google Scholar 

  65. Smith SGC, Reimschuessel R, Decker C-S, Carson MC (2009) Simultaneous screening and confirmation of multiple classes of drug residues in fish by liquid chromatography-ion trap mass spectrometry. J Chromat A 1216:8224–8232

    Article  CAS  Google Scholar 

  66. Bacteriological Analytical Manual (BAM) Bacteriological Analytical Manual – Revision A. Last Updated: 05/14/2009, http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/default.htm

  67. Espiñeira M, Atanassova M, Vieites JM, Santaclara FJ (2010) Validation of a method for the detection of five species, serogroups, biotypes and virulence factors of Vibrio by multiplex PCR in fish and seafood. Food Microbiol 27:122–131

    Article  PubMed  Google Scholar 

  68. Kural AG, Shearer AE, Kingsley DH, Chen H (2008) Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. Int J Food Microbiol 127:1–5

    Article  PubMed  Google Scholar 

  69. Calci KR, Meade GK, Tezloff RC, Kingsley DH (2005) High-pressure inactivation of hepatitis A virus within oysters. Appl Environ Microbiol 71:339–343

    Article  PubMed  CAS  Google Scholar 

  70. Kingsley DH, Chen H (2009) Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. Int J Food Microbiol 130:61–64

    Article  PubMed  CAS  Google Scholar 

  71. Li D, Tang Q, Wang J, Wang Y, Zhao Q, Xue C (2009) Effects of high-pressure processing on murine norovirus-1 in oysters (Crassostrea gigas) in situ. Food Control 20:992–996

    Article  CAS  Google Scholar 

  72. Murchie LW, Kelly AL, Wiley M, Adair BM, Patterson M (2007) Inactivation of a calicivirus and enterovirus in shellfish by high pressure. Innovative Food Sci Emerg Technol 8:213–217

    Article  Google Scholar 

  73. Meujo DAF, Kevin D, Peng J, Bowling JJ, Liu J, Hamann MT (2010) Reducing oyster-associated bacteria levels using supercritical fluid CO2 as an agent of warm pasteurization. Int J Food Microbiol 138:63–70

    Article  PubMed  CAS  Google Scholar 

  74. Quan Y, Choi KD, Chung D, Shin IS (2010) Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. Int J Food Microbiol 136:255–260

    Article  PubMed  CAS  Google Scholar 

  75. Wang D, Zhang D, Chen W, Yu S, Shi X (2010) Retention of Vibrio parahaemolyticus in oyster tissues after chlorine dioxide treatment. Int J Food Microbiol 137:76–80

    Article  PubMed  CAS  Google Scholar 

  76. Huang YR, Hung YC, Hsu SY, Huang YW, Hwang DF (2008) Application of electrolyzed water in the food industry. Food Control 19:329–345

    Article  Google Scholar 

  77. Tahiri I, Desbiens M, Kheadr E, Lacroix C, Fliss I (2009) Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked wild salmon. Food Microbiol 26:783–793

    Article  PubMed  CAS  Google Scholar 

  78. Matamoros S, Pilet MF, Gigout F, Prévost H, Leroi F (2009) Selection and evaluation of seafoodborne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria. Food Microbiol 26:638–644

    Article  PubMed  CAS  Google Scholar 

  79. Pinto AL, Fernandes M, Pinto C, Albano H, Castilho F, Teixeira P, Gibbs PA (2009) Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. Int J Food Microbiol 129:50–58

    Article  PubMed  CAS  Google Scholar 

  80. Song HP, Kim B, Jung S, Choe JH, Yun H, Kim YJ, Jo C (2009) Effect of gamma and electron beam irradiation on the survival of pathogens inoculated into salted, seasoned, and fermented oyster. LWT Food Sci Technol 42:1320–1324

    Article  CAS  Google Scholar 

  81. Kim B, Song HP, Choe JH, Jung S, Jang A, Kim YJ, Jo C (2009) Application of electron-beam irradiation on the production of salted and seasoned short-necked clam, Tapes Pilippinarum, for safe distribution. Rad Phys Chem 78:585–587

    Article  CAS  Google Scholar 

  82. Medina M, Cabeza MC, Bravo D, Cambero I, Montiel R, OrdóñezNuñez JAM, Hoz LA (2009) comparison between E-beam irradiation and high pressure treatment for cold-smoked salmon sanitation: microbiological aspects. Food Microbiol 26:224–227

    Article  PubMed  CAS  Google Scholar 

  83. Mahmoud BSM (2009) Effect of X-ray treatments on inoculated Escherichia coli O157: H7, Salmonella enterica, Shigella flexneri and Vibrio parahaemolyticus in ready-to-eat shrimp. Food Microbiol 26:860–864

    Article  PubMed  CAS  Google Scholar 

  84. Mahmoud BSM (2009) Reduction of Vibrio vulnificus in pure culture, half shell and whole shell oysters (Crassostrea virginica) by X-ray. Int J Food Microbiol 130:135–139

    Article  PubMed  Google Scholar 

  85. Gudbjornsdottir B, Jonsson A, Hafsteinsson H, Heinz V (2010) Effect of high-pressure processing on Listeria spp. and on the textural and microstructural properties of cold smoked salmon. LWT Food Sci Technol 43:366–374

    Article  CAS  Google Scholar 

  86. Brutti A, Rovere P, Cavallero S, D’Amelio S, Danesi P, Arcangeli G (2010) Inactivation of Anisakis simplex larvae in raw fish using high hydrostatic pressure treatments. Food Control 21:331–333

    Article  Google Scholar 

  87. Schirmer BC, Heiberg R, Eie T, Møretrø T, Maugesten T, Carlehøg M, Langsrud S (2009) A novel packaging method with a dissolving CO2 headspace combined with organic acids prolongs the shelf life of fresh salmon. Int J Food Microbiol 133:154–160

    Article  PubMed  CAS  Google Scholar 

  88. Norhana MNW, Azman AMN, Poole SE, Deeth HC, Dykes GA (2009) Effects of bilimbi (Averrhoa bilimbi L.) and tamarind (Tamarindus indica L.) juice on Listeria monocytogenes Scott A and Salmonella typhimurium ATCC 14028 and the and the sensory properties of raw shrimps. Int J Food Microbiol 136:88–94

    Article  PubMed  Google Scholar 

  89. Chaiyakosa S, Charernjiratragul W, Umsakul K, Vuddhakul V (2007) Comparing the efficiency of chitosan with chlorine for reducing Vibrio parahaemolyticus in shrimp. Food Control 18:1031–1035

    Article  CAS  Google Scholar 

  90. Ye M, Neetoo H, Chen H (2008) Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 127:235–240

    Article  PubMed  CAS  Google Scholar 

  91. Terio V, Martella V, Moschidou P, Di Pinto P, Tantillo G, Buonavoglia C (2010) Food norovirus in retail shellfish microbiology. Food Microbiol 27:29–32

    Article  PubMed  CAS  Google Scholar 

  92. Bakar J, Yassoralipour A, Bakar FA, Rahman RA (2010) Biogenic amine changes in barramundi (Lates calcarifer) slices stored at 0°C and 4°C. Food Chem 119:467–470

    Article  CAS  Google Scholar 

  93. Post-harvest Oyster Processing Technologies – Fact Sheet for Seafood Dealers and Processors, http://www.dmr.state.ms.us/Fisheries/Seafood-Technology/pdfs/fact-sheet-postharvest-oyster-processing.pdf

  94. Prapaiwong N, Wallace RK, Arias CR (2009) Bacterial loads and microbial composition in high pressure treated oysters during storage. Int J Food Microbiol 131:145–150

    Article  PubMed  CAS  Google Scholar 

  95. Mahmoud BS, Burrage DD (2009) Inactivation of Vibrio parahaemolyticus in pure culture, whole live and half shell oysters (Crassostrea virginica) by X-ray. Lett Appl Microbiol 48:572–578

    Article  PubMed  CAS  Google Scholar 

  96. De Roda Husman AM, Lodder-Verschoor F, van den Berg HH, Le Guyader FS, van Pelt H, van der Poel WH, Rutjes SA (2007) Rapid virus detection procedure for molecular tracing of shellfish associated with disease outbreaks. J Food Prot 70:967–974

    PubMed  CAS  Google Scholar 

  97. Le Guyader FS, Parnaudeau S, Schaeffer J, Bosch A, Loisy F, Pommepuy M, Atmar RL (2009) Detection and quantification of noroviruses in shellfish. Appl Environ Microbiol 75:618–624

    Article  PubMed  CAS  Google Scholar 

  98. Gentry J, Vinjé J, Lipp EK (2009) A rapid and efficient method for quantitation of genogroups I and II norovirus from oysters and application in other complex environmental samples. J Virol Meth 156:59–65

    Article  CAS  Google Scholar 

  99. Xiaoxia K, Qingping W, Dapeng W, Jumei Z (2008) Simultaneous detection of norovirus and rotavirus in oysters by multiplex RT-PCR. Food Control 19:722–726

    Article  Google Scholar 

Books and Reviews

  • Balaban M, Odabaşi A, Damar S, Oliveira A (2007) Quality evaluation of seafood. In: Da-Wen Sun (ed) Computer vision technology for food quality evaluation. Academic, San Diego, pp 189–209

    Google Scholar 

  • Ciminiello P, Dell’ Aversano C, Fattorusso E, Forino M (2009) Recent developments in mediterranean harmful algal events. In: Fishbein JC (ed) Advances in molecular toxicology. Elsevier, New York, pp 1–41

    Google Scholar 

  • Fung D (2009) Food spoilage, preservation and quality control. In: Encyclopedia of microbiology. 3rd edn. Elsevier, New York, pp 54–79

    Google Scholar 

  • Halvorson H, Smolowitz R (2009) Aquaculture. In: Encyclopedia of microbiology, 3rd edn. Elsevier, New York, pp 17–22

    Chapter  Google Scholar 

  • Hwang D-F, Noguchi T (2007) Tetrodotoxin poisoning. In: Advances in food and nutrition research, vol 52. Elsevier, New York, pp 141–236

    Google Scholar 

  • Jong E (2008) Toxic syndromes the travel and tropical medicine manual. In: Fish and shellfish poisoning, 4th edn. Saunders, Philadelphia, pp 474–480

    Google Scholar 

  • Keener K (2007) Food regulations. In: Handbook of farm, dairy, and food machinery. William Andrew, Norwich, pp 15–43

    Chapter  Google Scholar 

  • Landrigan P, Kotelchuck D, Grandjean P (2007) Principles for prevention of the toxic effects of metals. In: Handbook on the toxicology of metals, 3rd edn, Academic, San Diego, pp 319–337

    Google Scholar 

  • Le Guyader F, Atmar R (2007) Viruses in shellfish. In: Perspectives in Medical Virology, vol 17. Elsevier, Barcelona, pp 205–226

    Google Scholar 

  • Ling KH, Nichols P, But P-H (2009) Fish-induced keriorrhea. In: Advances in food and nutrition research, vol 57. Elsevier, New York, pp 1–52

    Google Scholar 

  • Niemira B, Zhang Q (2009) Advanced technologies for detection and elimination of pathogens. In: The produce contamination problem. Elsevier, New York, pp 425–443

    Google Scholar 

  • Paulsen P, Luf W, Smulders F (2006) Different legislations on toxicants in foodstuffs. In: Food toxicants analysis. Elsevier, New York, pp 11–31

    Google Scholar 

  • Rzeżutka A, Cook N (2009) Review of currently applied methodologies used for detection and typing of foodborne viruses. In: Global issues in food science and technology. Academic, San Diego, pp 229–246

    Google Scholar 

  • Still K, Mohapatra A (2009) Biotoxins. In: Information resources in toxicology, 4th edn. Academic, San Diego, pp 91–102

    Google Scholar 

  • Taylor S (2008) Molluscan shellfish allergy. In: Advances in food and nutrition research, vol 54. pp 139–177

    Google Scholar 

Download references

Acknowledgments

We thank the NOAA (Mississippi-Alabama Sea Grant consortium, NIUST) Kraft Foods, CDC, and the NIH for financial support. We also thank Carol-Scott Defore, Mark Guy, and Derrick Donald for the precious assistance. Damaris A.F. Meujo is supported by a fellowship from the Medicines for Malaria Venture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damaris A. F. Meujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meujo, D.A.F., Hamann, M.T. (2013). Science, Policy, and Risk Management: Case of Seafood Safety. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_17

Download citation

Publish with us

Policies and ethics