Skip to main content

Incinerator Furnaces and Boilers

  • Chapter
  • First Online:
Incineration Technologies

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 2372 Accesses

Abstract

Most problems with incinerator plant proper are basically mechanical and arise mainly at two levels: (a) the introduction of waste into the furnace and (b) the extraction of the various combustion residues. Both should proceed without undesirable and uncontrolled entrance of ambient air.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. doi:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buekens A, Schoeters J (1984) Final Report Thermal methods in waste disposal – pyrolysis, gasification – incineration – RDF-firing, Contract Number ECI 1011/B 7210/83B

    Google Scholar 

  2. Achternbosch M, Richers U (2002) Materials flows and investment costs of flue gas cleaning systems of municipal solid waste incinerators. Forschungszentrum Karlsruhe Wissenschaftliche Berichte (FZKA), Karlsruhe, 6726

    Google Scholar 

  3. Hämmerli H (1991) Grundlagen zur Berechnung von Rostfeuerungen. In: Reimann D (ed) Rostfeuerungen zur Abfallverbrennung. EF-Verlag, Hrsg

    Google Scholar 

  4. European Commission (2006) Integrated pollution prevention and control – reference document on the best available techniques for waste incineration

    Google Scholar 

  5. Buekens A (2008) Solving emission problems in a fluid bed MSWI. In: 5th i-CIPEC: international conference on combustion, incineration/pyrolysis and emission control – eco-conversion of biomass and waste, Chiang Mai

    Google Scholar 

  6. Commission Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (notified under document number C(2000) 1147)

    Google Scholar 

  7. Ferziger JH, Peric M (2001) Computational methods for fluid dynamics, 2nd edn. Springer, Berlin, http://elib.tu-darmstadt.de/tocs/100561322.pdf

    Google Scholar 

  8. Reményi K (1987) Industrial firing. Akadémiai Kiado, Budapest, 496 p

    Google Scholar 

  9. Ferziger JH, Peric M (2001) Computational methods for fluid dynamics, 2nd edn. Springer, New York, http://elib.tu-darmstadt.de/tocs/100561322.pdf

    Google Scholar 

  10. Yang YB, Nasserzadeh V, Swithenbank J (2002) Mathematical modelling of MSW incineration in a travelling bed. J Waste Manag 22(4):369–380

    Article  Google Scholar 

  11. Yang YB, Goodfellow J, Nasserzadeh V, Swithenbank J (2002) Parameter study on the incineration of MSW in packed beds. J Inst Energy 75(504):66–80

    Google Scholar 

  12. Lim CN, Nasserzadeh V, Swithenbank J (2001) The modelling of solid mixing in waste incinerator plants. J Powder Technol 114(1):89–95

    Article  Google Scholar 

  13. SUWIC papers (2011) http://www.suwic.group.shef.ac.uk/Journal%20Papers.html. Accessed 29 Dec 2011

  14. Buekens A, Mertens J, Schoeters J, Steen P (1979) Experimental techniques and mathematical models in the study of waste pyrolysis and gasification. Conserv Recycl 3(1):1–23

    Article  Google Scholar 

  15. Moilanen A (2006) Thermogravimetric characterisations of biomass and waste for gasification processes, VTT Publications 607. 103 pp. + app. 97 pp. Espoo, Finland

    Google Scholar 

  16. Nasserzadeh V, Swithenbank J, Lawrence D, Garrod N, Jones B (1995) Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique. J Inst Energy 68(476):106–120

    Google Scholar 

  17. Gorman P, Bergman F, Oberacker D (1984) Field experience in sampling hazardous waste incinerators. US Environmental Protection Agency, Washington, DC, EPA/600/D-84/134 (NTIS PB84201573)

    Google Scholar 

  18. Carroll GJ (1994) Pilot scale research on the fate of trace metals in incineration. In: Hester RE (ed) Waste incineration and the environment. Royal Society of Chemistry (Great Britain), Cambridge, pp 95–121

    Chapter  Google Scholar 

  19. http://cfr.vlex.com/vid/270-62-hazardous-waste-incinerator-permits-19820277, (2010). Accessed 29 Dec 2011

  20. Dellinger B, Torres JL, Rubey WA, Hall DL, Graham JL (1984) Determination of the thermal decomposition properties of 20 selected hazardous organic compounds. Prepared for the U.S. EPA Industrial Environmental Research Laboratory. Prepared by the University of Dayton Research Institute. EPA-600/2-84-138. NTIS PB-84-232487

    Google Scholar 

  21. von Paczkowski K (1979) Der Kessel als Bestandteil einer Müllverbrennungsanlage. Seine Entwicklung, sein Entwurf, WÄRME 85:121–125

    Google Scholar 

  22. von Paczkowski K (1984) Tendenzen bei Kesseln in Müllverbrennungsanlagen. In: Thome-Kozmiensky KI (ed) Recycling international. EF-Verlag, Berlin

    Google Scholar 

  23. Jachimowski A (1978) Kessel für Abfallverbrennungsanlagen. Chemie-Technik 7:403–5

    Google Scholar 

  24. Rasch R (1976) Korrosionsvorgänge im Feuerraum. In Kumpf, Maas, Straub, Müll und Abfallbeseitigung, E. Schmidt Verlag, 39 Lfg/III, 7300

    Google Scholar 

  25. Vaughan DA, Krause HH, Boyd WK (1974) Study of corrosion in municipal incinerators versus refuse composition. EPA-R-800055

    Google Scholar 

  26. Schroer C, Konys J (2002) Rauchgasseitige hochtemperatur-korrosion in müllverbrennungsanlagen – ergebnisse und bewertung einer literaturrecherche. Forschungszentrum Karlsruhe (FZKA), Karlsruhe, 6695

    Google Scholar 

  27. Brossard JM, Lebel F, Rapin C, Mareche JF, Chaucherie X, Nicol F, Vilasi M (2009) Lab-scale study on fireside superheaters corrosion in MSWI Plants. In: Proceedings of the 17th annual north american waste-to-energy conference, NAWTEC17, 18–20 May 2009, Chantilly

    Google Scholar 

  28. Deuerling C, Maguhn J, Nordsieck H, Benker B, Zimmermann R, Warnecke R (2009) Investigation of the mechanisms of heat exchanger corrosion in a municipal waste incineration plant by analysis of the raw gas and variation of operating parameters. Heat Trans Engin 30(10–11):822–831

    Article  Google Scholar 

  29. Olie K, Vermeulen PL, Hutzinger O (1977) Chlorodibenzop-dioxins and chlorodibenzofurans are trace components of fly ash of some municipal incinerators in the Netherlands. Chemosphere 6:455–459

    Article  Google Scholar 

  30. Rappe C, Andersson R, Bergqvist PA, Brohede C, Hansson M, Kjeller LO, Lindström G, Marklund S, Nygren M, Swanson SE, Tysklind M, Wiberg K (1987) Overview on environmental fate of chlorinated dioxins and dibenzofurans-sources, levels and isomeric pattern in various matrices. Chemosphere 16:1603

    Article  Google Scholar 

  31. Rappe C, Andersson R, Bergqvist PA, Brohede C, Hansson M, Kjeller LO, Lindström G, Marklund S, Nygren M, Swanson SE, Tysklind M, Wiberg K (1987) Sources and relative importance of PCDD and PCDF emissions. Waste Manag Res 5(3):225–237

    Article  Google Scholar 

  32. Huang H, Buekens A (1995) On the mechanisms of dioxin formation in combustion processes. Chemosphere 31:4099–4117

    Article  Google Scholar 

  33. Weber R, Iino F, Imagawa T, Takeuchi M, Sakurai T, Sadakata M (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 44:1429–38

    Article  Google Scholar 

  34. Weber R, Sakurai T, Ueno S, Nishino J (2002) Correlation of PCDD/PCDF and CO values in a MSW incinerator–indication of memory effects in the high temperature/cooling section. Chemosphere 49:127–34

    Article  Google Scholar 

  35. Sakai SI, Hayakawa K, Takatsuki H, Kawakami I (2001) Dioxin-like PCBs released from waste incineration and their deposition flux. Environ Sci Technol 35:3601–7

    Article  Google Scholar 

  36. McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Engin J 86:343–368

    Article  Google Scholar 

  37. Everaert K, Baeyens J (2002) The formation and emission of dioxins in large scale thermal processes. Chemosphere 46:439–448

    Article  Google Scholar 

  38. Stanmore BR (2004) The formation of dioxins in combustion systems. Combust Flame 136:398–427

    Article  Google Scholar 

  39. Bumb RR, Crummett WB, Cutie SS, Gledhill JR, Hummel RH, Kagel RO, Lamparski LL, Luoma EV, Miller DL, Nestrick TJ, Shadoff LA, Stehl RH, Woods JS (1980) Trace chemistries of fire: a source of chlorinated dioxins. Science 210(4468):385–90

    Article  Google Scholar 

  40. Karasek FW, Dickson LC (1987) Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Science 237(4816):754–756

    Article  Google Scholar 

  41. Gullett BK, Bruce KR, Beach LO (1990) Formation of chlorinated organics during solid waste combustion. Waste Manag Res 8:203

    Google Scholar 

  42. Sidhu S, Edwards P (2002) Role of phenoxy radicals in PCDD/F formation. Int J Chem Kinet 34:531

    Article  Google Scholar 

  43. Vogg H, Metzger M, Stieglitz L (1987) Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration. Waste Manag Res 5(3):285–294

    Article  Google Scholar 

  44. Hagenmaier H, Kraft M, Brunner H, Haag R (1987) Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ Sci Technol 21(11):1080–1084

    Article  Google Scholar 

  45. Stieglitz L, Zwick G, Beck J, Roth W, Vogg H (1989) On the de-novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere 18:1219–1226

    Article  Google Scholar 

  46. Schwarz G, Stieglitz L (1992) Formation of organohalogen compounds in fly ash by metal-catalyzed oxidation of residual carbon. Chemosphere 25(3):277–282

    Article  Google Scholar 

  47. Stieglitz L, Jay K, Hell K, Wilhelm J, Polzer J, Buekens A (2003) Investigation of the formation of polychlorodibenzodioxins /- Furans and of other organochlorine compounds in thermal industrial processes, Forschungszentrum Karlsruhe, Wissenschaftliche Berichte – FZKA 6867

    Google Scholar 

  48. Gullett B, Bruce K, Beach L (1990) The effect of metal catalysts on the formation of polychlorinated diobenzo-p-dioxin and polychlorinated diobenzofuran precursors. Chemosphere 20:1945–1952

    Article  Google Scholar 

  49. Olie K, Addink R, Schoonenboom M (1998) Metals as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes. J Air Waste Manag Assoc 48:101–105

    Article  Google Scholar 

  50. Kuzuhara S, Sato H, Kasai E, Nakamura T (2003) Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environ Sci Technol 37(11):2431–5

    Article  Google Scholar 

  51. Hinton WS, Lane AM (1991) Characteristics of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere 22:473–483

    Article  Google Scholar 

  52. Tuppurainen K, Halonen I, Ruokojärvi P, Tarhanen J, Ruuskanen J (1998) Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review. Chemosphere 36(7):1493–1511

    Article  Google Scholar 

  53. Addink R, Paulus RHWL, Olie K (1996) Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash. Environ Sci Technol 30(7):2350–2354

    Article  Google Scholar 

  54. Pandelova M, Lenoir D, Schramm K-W (2007) Inhibition of PCDD/F and PCB formation in co-combustion. J Hazard Mater 149(3):615–8

    Article  Google Scholar 

  55. Vehlow J, Braun H, Horch K, Merz A, Schneider J, Stieglitz L, Vogg H (1990) Semi-technical demonstration of the 3R process. Waste Manag Res 8(6):461–472

    Article  Google Scholar 

  56. Weber R, Nagai K, Nishino J, Shiraishi H, Ishida M, Takasuga T, Kondo K, Hiraoka M (2002) Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere 46:1247–1253

    Article  Google Scholar 

  57. Stach J, Pekarek V, Grabic R, Lojkasek M, Pacakova V (2000) Dechlorination of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans on fly ash. Chemosphere 41:1881–1887

    Article  Google Scholar 

  58. Alderman SL (2005) Infrared and X-ray spectroscopic studies of the copper (II) oxide mediated reactions of chlorinated aromatic precursors to PCDD/F, Ph.D. Dissertation Louisiana State University, Chapter 1. http://etd.lsu.edu/docs/available/etd-01112005-150557/unrestricted/Alderman_dis.pdf. Accessed 11 July 2011

  59. Buekens A, Huang H (1998) Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. J Hazard Mater 62:1–33

    Article  Google Scholar 

  60. Wielgosiński G (2010) The possibilities of reduction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans emission. Int J Chem Eng. Review article 392175:11

    Google Scholar 

  61. Düwel U, Nottrodt A, Ballschmiter K (1990) Simultaneous sampling of PCDD/PCDF inside the combustion chamber and on four boiler levels of a waste incineration plant. Chemosphere 20(1):839–846, More papers are to be found at: http://www.nottrodt-ing.de/de/publi.htm

    Article  Google Scholar 

  62. Wikström E, Ryan S, Touati A, Tabor D, Gullett BK (2004) Origin of carbon in polychlorinated dioxins and furans formed during sooting combustion. Environ Sci Technol 38(13):3778–84

    Article  Google Scholar 

  63. Wikström E, Ryan S, Touati A, Gullett BK (2004) In situ formed soot deposit as a carbon source for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 38(7):2097–101

    Article  Google Scholar 

  64. Wikström E, Ryan S, Touati A, Tabor D, Gullett BK (2003) Key parameters for de novo formation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 37(9):1962–70

    Article  Google Scholar 

  65. Addink R, Olie K (1995) Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environ Sci Technol 29:1425–1435

    Article  Google Scholar 

  66. Konduri R, Altwicker ER (1994) Analysis of time scales pertinent to dioxin/furan formation on fly ash surfaces in municipal solid waste incinerators. Chemosphere 28(1):23–45

    Article  Google Scholar 

  67. Zimmermann R, Blumenstock M, Heger HJ, Schramm K-W, Kettrup A (2001) Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects. Environ Sci Technol 35:1019–1030

    Article  Google Scholar 

  68. Kreisz S, Hunsinger H, Vogg H (1997) Technical plastics as PCDD/F absorbers. Chemosphere 34(5–7):1045–1052

    Article  Google Scholar 

  69. Pekarek V, Weber R, Grabic R, Solcova O, Fiserova E, Syc M, Karban J (2007) Matrix effect on the de novo synthesis of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls and benzenes. Chemosphere (Eng) 68(1):51–61

    Article  Google Scholar 

  70. Altwicker ER (1994) Formation of PCDD/F in municipal solid waste incinerators: laboratory and modeling studies. J Hazard Mater 47(1–3):137–161

    Google Scholar 

  71. Buekens A, Tsytsik P, Carleer R (2007) Methods for studying the de novo formation of dioxins at a laboratory scale. In: International conference on power engineering-2007, Hangzhou, 23–27 Oct 2007

    Google Scholar 

  72. Buekens A, Swithenbank J (2007) CFD modelling of industrial plant from a viewpoint of dioxins formation. In: International conference on power engineering (ICOPE-2007), Hangzhou

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buekens, A. (2013). Incinerator Furnaces and Boilers. In: Incineration Technologies. SpringerBriefs in Applied Sciences and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5752-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5752-7_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5751-0

  • Online ISBN: 978-1-4614-5752-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics