Skip to main content

Semantics of First-Order Languages

  • Chapter
  • First Online:
A Course on Mathematical Logic

Part of the book series: Universitext ((UTX))

  • 3935 Accesses

Abstract

In the last chapter, we presented syntactical notions pertaining to first-order theories. However, in general, mathematical theories are not developed syntactically. In this chapter, we give the semantics of first-order languages to connect the syntactical description of a theory with the setting in which a mathematical theory is generally developed. This chapter should also be seen as the beginning of a branch of logic called model theory, which can be thought of as the general study of mathematical structures. Some important notions from model theory, for example, the downward Löwenheim–Skolem theorem, types, homogeneous structures, and definability, are introduced here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ax, J.: The elementary theory of finite fields. Ann. Math. 88, 103–115 (1968)

    Article  MathSciNet  Google Scholar 

  2. Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry, vol. 36, A Series of Modern Surveys in Mathematics. Springer, New York (1998)

    MATH  Google Scholar 

  3. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, London (1990)

    MATH  Google Scholar 

  4. Flath, D., Wagon, S.: How to pick out integers in the rationals: An application of number theory to logic. Am. Math. Mon. 98, 812–823 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hinman, P.: Fundamentals of Mathematical Logic. A. K. Peters (2005)

    MATH  Google Scholar 

  6. Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Vintage Books, New York (1989)

    Google Scholar 

  7. Hrushovski, E.: The Mordell–Lang conjecture for function fields. J. Am. Math. Soc. 9(3), 667–690 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jech, T.: Set Theory, Springer Monographs in Mathematics, 3rd edn. Springer, New York (2002)

    Google Scholar 

  9. Kunen, K.: Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  10. Lang, S.: Algebra, 3rd edn. Addison-Wesley (1999)

    Google Scholar 

  11. Marker, D.: Model Theory: An Introduction, GTM 217. Springer, New York (2002)

    Google Scholar 

  12. Rogers, H.J.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  13. Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1990)

    Google Scholar 

  14. Pila, J.: O-minimality and André-Oort conjecture for ℂ n. Ann. Math. (2) 172(3), 1779–1840 (2011)

    Google Scholar 

  15. Pila, J., Zannier, U.: Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei(9). Mat. Appl. 19(2), 149–162 (2008)

    Google Scholar 

  16. Shoenfield, J.R.: Mathematical Logic. A. K. Peters (2001)

    MATH  Google Scholar 

  17. Srivastava, S.M.: A Course on Borel Sets, GTM 180. Springer, New York (1998)

    Book  Google Scholar 

  18. Swan, R.G.: Tarski’s principle and the elimination of quantifiers (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Srivastava, S.M. (2013). Semantics of First-Order Languages. In: A Course on Mathematical Logic. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5746-6_2

Download citation

Publish with us

Policies and ethics