Atmosphere-Water Exchange

  • Bernd JähneEmail author


Gaseous and volatile chemical species reside not only in the atmosphere. Because they dissolve in water, they are also distributed in the hydrosphere. The by far largest part of the hydrosphere is the ocean. Therefore, the exchange between atmosphere and oceans is the most important process for the fate of gaseous and volatile chemical species (Table 8.1).


Schmidt Number Wind Wave Transfer Velocity Molecular Diffusion Coefficient Viscous Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Bulk coefficients

c i relate the transfer velocity k for a species i to the wind velocity U r in a reference height, typically at 10 m above the mean water level: c i = k i /U r . From the bulk coefficient, the flux density j i of a species can be computed as j i = c i (C r C 0)U r , where C r and C 0 are the corresponding concentrations at the reference height and right at the water surface, respectively. For momentum density (ρU) the bulk coefficients is also known as the drag coefficient c D . It can also be expressed as c D = (u /U r )2 with the momentum flux given by \(j_m = \rho u_{\ast}^2\); u is the friction velocity.

Friction velocity

u is a measure for the tangential force per area applied by the wind at the water surface, the shear stress \(\tau = \rho u_*^2\), which is also equal to the vertical momentum flux density j m .

Mass boundary layer

Thickness of the layers at both sides of the water surface in which transport of mass by turbulence is smaller than by molecular diffusion.

Schmidt and Prandtl numbers, Sc and Pr

The Schmidt and Prandtl numbers are the ratio of kinematic viscosity ν (molecular diffusion coefficient for momentum) and the molecular diffusion coefficients for the corresponding chemical species, D, and heat, D h , respectively. Thus, these numbers express how much slower chemical species and heat, respectively, are transported by molecular processes than momentum. In air, these numbers are in the order of one; in water, the Prandtl number is about 10 and the Schmidt number about 1,000.

Transfer velocity

k is the velocity by which a momentum, heat, and chemical are transported across the surface; because of the concentration discontinuity at the water surface, the transfer velocity on the air side is different from the transfer velocity on the water side.

Viscous boundary layer

Thickness of the layers at both sides of the water surface in which transport of momentum by turbulent is smaller than by molecular friction, resulting in a linear velocity profile in this layer.


Primary Literature

  1. 1.
    Bohr C (1899) Definition und methode zur bestimmung der invasions- und evasionscoefficienten bei der auflösung von gasen in flüssigkeiten. Werthe der genannten constanten sowie der absorptionscoefficienten der kohlensäure bei auflösung in wasser und in chlornatriumlösungen. Ann Phys Chem 68:500–525Google Scholar
  2. 2.
    Bolin B (1960) On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12(3):274–281. ISSN 2153-3490CrossRefGoogle Scholar
  3. 3.
    Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27CrossRefGoogle Scholar
  4. 4.
    Jähne B (1982) Dry deposition of gases over water surfaces (gas exchange). In: Flothmann D (ed) Exchange of air pollutants at the air-earth interface (dry deposition). Battelle Institute, FrankfurtGoogle Scholar
  5. 5.
    Jähne B (2009) Air-sea gas exchange. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia ocean sciences. Elsevier, Boston, pp 3434–3444Google Scholar
  6. 6.
    Jähne B, Haußecker H (1998) Air-water gas exchange. Annu Rev Fluid Mech 30:443–468CrossRefGoogle Scholar
  7. 7.
    Reichardt H (1951) Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen. Z Angew Math Mech 31:208–219CrossRefGoogle Scholar
  8. 8.
    Peng TH, Broecker WS, Mathieu GG, Li Y-H, Bainbridge A (1979) Radon evasion rates in the Atlantic and Pacific oceans as determined during the geosecs program. J Geophys Res 84(C5):2471–2487CrossRefGoogle Scholar
  9. 9.
    Roether W, Kromer B (1984) Optimum application of the radon deficit method to obtain air–sea gas exchange rates. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces. Reidel, Hingham, pp 447–457Google Scholar
  10. 10.
    Watson AJ, Upstill-Goddard RC, Liss PS (1991) Air-sea exchange in rough and stormy seas measured by a dual tracer technique. Nature 349(6305):145–147CrossRefGoogle Scholar
  11. 11.
    Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, Boston, pp 113–129CrossRefGoogle Scholar
  12. 12.
    Deacon EL (1977) Gas transfer to and across an air-water interface. Tellus 29:363–374CrossRefGoogle Scholar
  13. 13.
    Frew NM (1997) The role of organic films in air-sea gas exchange. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 121–171CrossRefGoogle Scholar
  14. 14.
    Jacobs C, Nightingale P, Upstill-Goddard R, Kjeld JF, Larsen S, Oost W (2002) Comparison of the deliberate tracer method and eddy covariance measurements to determine the air/sea transfer velocity of CO2. In: Saltzman E, Donelan M, Drennan W, Wanninkhof R (eds) Gas transfer at water surfaces. Geophysical Monograph, vol 127. American Geophysical UnionCrossRefGoogle Scholar
  15. 15.
    Jähne B (1980) Zur Parametrisierung des Gasaustauschs mit Hilfe von Laborexperimenten. Dissertation, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, IUP D-145
  16. 16.
    Jähne B (1987) Image sequence analysis of complex physical objects: nonlinear small scale water surface waves. In: Proceedings of 1st international conference on computer vision, London, pp 191–200Google Scholar
  17. 17.
    Jähne B (1991) New experimental results on the parameters influencing air-sea gas exchange. In: Wilhelms SC, Gulliver JS (eds) Air-water mass transfer, Selected papers from the 2nd international symposium on gas transfer at water surfaces, Minneapolis, 11–14 Sep 1990. ASCE, pp 582–592Google Scholar
  18. 18.
    Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10,767–10,776Google Scholar
  19. 19.
    Keeling RF (1993) On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J Marine Res 51:237–271CrossRefGoogle Scholar
  20. 20.
    King DB, Bryun WJD, Zheng M, Saltzman ES (1995) Uncertainties in the molecular diffusion coefficient of gases in water for use in the estimation of air-sea exchange. In: Jähne B, Monahan E (eds) Air-water gas transfer, Selected papers, 3rd international symposium on air-water gas transfer. AEON, Hanau, pp 13–22Google Scholar
  21. 21.
    McKenna SP, Bock EJ (2006) Physicochemical effects of the marine microlayer on air-sea gas transport. In Gade M, Hühnerfuss H, Korenowski GM (eds) Marine surface films: chemical characteristics, influence on air-sea interactions, and remote sensing. Springer, Berlin/Heidelberg, pp 77–91Google Scholar
  22. 22.
    Sündermann J (ed) (1986) Landolt-Börnstein, vol V 3c, Oceanography. Springer, HeidelbergGoogle Scholar
  23. 23.
    Torgersen T, Top Z, Clarke WB, Jenkins WJ (1977) A new method for physical limnology-tritium-helium-3 ages results for Lakes Erie, Huron, and Ontario. Limnol Oceanogr 22:181–193CrossRefGoogle Scholar
  24. 24.
    Tschiersch J, Jähne B (1980) Gas Exchange trough a rough water surface in a circular windtunnel; Wave characteristics under limited and unlimited fetch. In: Broecker HC, Hasse L (eds) Berichte aus dem Sonderforschungsbereich 94 Meeresforschung – Symposium on capillary waves and gas exchange, Trier, 2–6 July 1979, number 17. Univ. Hamburg, pp 63–70Google Scholar
  25. 25.
    Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  26. 26.
    Woolf D, Leifer I, Nightingale P, Rhee T, Bowyer P, Caulliez G, de Leeuw G, Larsen S, Liddicoat M, Baker J, Andreae M (2007) Modelling of bubble-mediated gas transfer: fundamental principles and a laboratory test. J Marine Syst 66:71–91CrossRefGoogle Scholar

Books and Reviews

  1. Banner ML (ed) (1999) The wind-driven air-sea interface, electromagnetic and acoustic sensing, wave dynamics and turbulent fluxes, proceedings of the symposium Sydney, Australia, 11–15 January 1999. University of New South Wales, SydneyGoogle Scholar
  2. Bengtsson LO, Hammer CU (eds) (2001) Geosphere-biosphere interactions and climate. Cambridge University Press, CambridgeGoogle Scholar
  3. Borges AV, Wanninkhof R (2007) Fifth international symposium on gas transfer at water surfaces. J Mar Syst 66(1–4):1–308CrossRefGoogle Scholar
  4. Brasseur GP, Prinn RG, Pszenny AA (eds) (2003) Atmospheric chemistry in a changing world. An integration and synthesis of a decade of tropospheric chemistry research. Springer, BerlinGoogle Scholar
  5. Brutsaert W, Jirka GH (eds) (1984) Gas transfer at water surfaces. Reidel, DordrechtGoogle Scholar
  6. Csanady GT (2001) Air-sea interaction, laws and mechanisms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Cussler EL (2009) Diffusion – mass transfer in fluid systems, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Danckwerts PV (1970) Gas-liquid reactions. MacGraw-Hill, New YorkGoogle Scholar
  9. Davies JT (1972) Turbulence phenomena. An introduction to the eddy transfer of momentum, mass, and heat, particularly at interfaces. Academic, New York/LondonGoogle Scholar
  10. Davies JT, Rideal EK (1963) Interfacial phenomena, 2nd edn. Acadamic, New YorkGoogle Scholar
  11. Dobson F, Hasse L, Davis R (eds) (1980) Air-sea interaction: instruments and methods. Plenum, New YorkGoogle Scholar
  12. Donelan MA, Hui WH, Plant WJ (eds) (1996) The air-sea interface, radio and acoustic sensing, turbulence and wave dynamics, proceedings of the symposium, Marseille, France, 24–30 June 1993. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FloridaGoogle Scholar
  13. Donelan MA, Drennan WM, Saltzman ES, Wanninkhof R (eds) (2002) Gas transfer at water surfaces. American Geophysical Union, Washington, DCGoogle Scholar
  14. Emerson SR, Hedges J (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Favre A, Hasselmann K (eds) (1978) Turbulent fluxes through the sea surface, wave dynamics, and prediction, proceedings of the symposium, Marseille, 1977. Plenum, New YorkGoogle Scholar
  16. Fogg PGT, Sangster J (2003) Chemicals in the atmosphere: solubility, sources, and reactivity. Wiley, ChichesterGoogle Scholar
  17. Gade M, Hühnerfuss H, Korenowski GM (eds) (2005) Marine surface films: chemical characteristics, influence on air-sea interactions and remote sensing. Springer, BerlinGoogle Scholar
  18. Garbe CS, Handler RA, Jähne B (eds) (2007) Transport at the air sea interface – measurements, models and parameterizations. Springer, BerlinGoogle Scholar
  19. Gulliver JS (2007) Introduction to chemical transport in the environment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Jähne B, Monahan EC (eds) (1995) Air-water gas transfer – selected papers from the third international symposium on air-water gas transfer. AEON Verlag & Studio Hanau. Google Scholar
  21. Kantha LH, Clayson CA (2000) Small scale processes in geophysical fluid flows, vol 67, International geophysics series. Acadamic, San DiegoCrossRefGoogle Scholar
  22. Komori S, McGillis W (eds) (2011) Gas transfer at water surfaces, selected papers from the 6th international symposium. Kyoto University Press, KyotoGoogle Scholar
  23. Kraus EB, Businger JA (1994) Atmosphere-ocean interaction, vol 27, 2nd edn, Oxford monographs on geology and geophysics. Oxford University Press, New YorkGoogle Scholar
  24. Liss PS, Duce RA (eds) (2005) The sea surface and global change. Cambridge University Press, CambridgeGoogle Scholar
  25. Robinson IS (2010) Discovering the ocean from space – the unique applications of satellite oceanography. Springer, HeidelbergGoogle Scholar
  26. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonGoogle Scholar
  27. Soloviev A, Lukas R (2006) The near-surface layer of the ocean, vol 31, Atmospheric and oceanographic sciences library. Springer, DordrechtGoogle Scholar
  28. Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Mar Sci 1:213–244CrossRefGoogle Scholar
  29. Wilhelms SC, Gulliver JS (eds) (1991) Air-water mass transfer – selected papers from the 2nd international symposium on gas transfer at water surfaces, Minneapolis Minnesota, September 11–14, 1990. American Society of Civil Engineers, New YorkGoogle Scholar
  30. Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65, Elsevier oceanography series. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute for Environmental Physics and Heidelberg Collaboratory for Image Processing (HCI)University of HeidelbergHeidelbergGermany

Personalised recommendations