Skip to main content

Chapter 5 Riemann’s Geometric Function Theory

  • Chapter
  • First Online:
Hidden Harmony—Geometric Fantasies

Abstract

Riemann’s entry takes us from France to Germany. Riemann is one of the three creators of the theory of complex functions (Fig 5.1), but he wrote relatively little. Unusually for a major mathematician, his Werke, even augmented as they are by notes from lecture courses and papers left unpublished at his death, fill only a single volume. Each of his papers on complex function theory extended the subject greatly and then applied it to solve a substantial problem. As a result his successors found themselves with much to do, yet it can be argued that the profundity of his best ideas hindered their immediate reception, and it was to be a generation before those ideas were finally taken up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Neuenschwander (1981b, 91), citing Library records.

  2. 2.

    On von Bezold, see Laugwitz (1999, 32). He told Fuchs of his notes, in Gabelsberger shorthand, when they were colleagues in Berlin in the 1890s and Fuchs arranged for them to be transcribed into ordinary German script.

  3. 3.

    Quoted in Laugwitz (1999, 32), originally published in Neuenschwander (1987, 9).

  4. 4.

    The paper (1854a) was on trigonometric series, the accompanying lecture (1854b) on the foundations of geometry, both were published only in 1867.

  5. 5.

    Quoted in Laugwitz (1999, 29), who noted that the information was omitted from Dedekind’s later biography of Riemann, probably out of respect for Riemann’s widow Elise. He also speculated that Riemann’s depression seems to have persisted to the end of his life.

  6. 6.

    For the influence of Herbart on Riemann’s philosophical ideas, see Scholz (1982).

  7. 7.

    For a discussion of Riemann’s physics, see Bottazzini and Tazzioli (1995); the unWeberian paper is Riemann’s posthumous paper on electrodynamics, Riemann (1858).

  8. 8.

    n -fach ausgedehnte Grösse, see Riemann (1854b, Sect. 1).

  9. 9.

    See our discussion of Hermite’s ideas on p. 530.

  10. 10.

    See Neuenschwander (1981a,b) and the references cited there, as well as his later papers.

  11. 11.

    The letter was first published in Loria (1915) in a obituary of Tardy, and then in Weil (1979b). Brill and Noether (1894, 254–255) also document interesting examples of ideas that anticipated the idea of cuts in the work of Kirchhoff in 1848 and Helmholtz in 1853.

  12. 12.

    A set of the relevant lecture notes was published as Dirichlet (1904). The theorem is stated and proved on p. 4ff.

  13. 13.

    For a discussion of the emergence of the modern concept of function, see Bottazzini, The Higher Calculus.

  14. 14.

    Riemann used no specific word for this property.

  15. 15.

    The theorem was first stated by Montel (1913). Looman produced a proof in 1923 that, however, had a gap that was eventually filled in (Menchoff 1936). For a modern proof (Narasimhan and Nievergelt 2001, 48–50).

  16. 16.

    According to Brill and Noether (1894, 259) the concepts of multi-sheeted surface and of crosscuts were first introduced “in essence” in an (unpublished) note on a problem of electrostatic or thermal equilibrium on the surface of a cylinder with circular crosscuts. Referring to Riemann (1876b) they wrote that “We are inclined to call this note one of Riemann’s earliest works, or rather its way of thought the starting point for Riemann’s works on function theory”.

  17. 17.

    The awkward language shows how little point-set topology was available at this time.

  18. 18.

    A Laurent tail, as we would call it; Riemann gave it no special name.

  19. 19.

    Nowadays called a local uniformising parameter.

  20. 20.

    See, for example, the “source” book on its history, Monna (1975), and the discussions in Bottazzini, The Higher Calculus (1986) and Gray (2000a).

  21. 21.

    Dirichlet in fact stated this principle for three-dimensional domains (Dirichlet 1876, 127–128).

  22. 22.

    Klein Nachlass NSUB Göttingen, Prym–Klein, quoted in (Bottazzini 2003, 233).

  23. 23.

    This translation is taken from Riemann (2004, 35–36).

  24. 24.

    Riemann here added this footnote: “The dependence expressed here denotes dependence via a finite or infinite number of the four simplest operations, addition, multiplication, subtraction, and division. The expression ‘operation on quantities’ (by contrast to ‘operations on numbers’) indicates operations in which the rationality of the quantities does not play a role”.

  25. 25.

    The regions are assumed to have more than one point on their boundaries, but the nature of the boundary is nowhere discussed. It is unlikely Riemann had anything other than a simple closed curve in mind, since he took one region to be a disc. See Gray (1994).

  26. 26.

    If the region T is a subset of the plane, it is enough to consider the function log(z − z 0).

  27. 27.

    This was confirmed by Riemann himself in a letter to his brother Wilhelm on November 24th, 1851. See Neuenschwander (1981a, 104).

  28. 28.

    See Stahl (1896) and Riemann (1899).

  29. 29.

    Another glimpse is given in the four pages of notes described in (Elstrodt and Ullrich 1999).

  30. 30.

    Instead Roch gave a careful account of the number e (defined as lim(1 + 1 ∕ x)x for x = ) and the exponential function.

  31. 31.

    Plainly the condition f(z)(z − a)m − 1 =  is tacitly supposed.

  32. 32.

    The historians’ first problem with these notes, however, is dating them. Immediately beneath the heading \(\frac{55} {56}\) is a reference to Briot and Bouquet’s book of 1859, which is confusing enough. However, the legible script is soon replaced by the traditional, and often impenetrable, German hand used for the bulk of the notes. The legible script returns on pages 15, 42, and 43 for a few more references, for example, to Cauchy and Hermite, but nothing that would betray a date. It would seem therefore that the legible script was chosen for the titles of works in French and that the notes date from after 1859. But then one finds a clean start is made on page 111 with the date 1856. From then on the notes are the basis of Stahl’s version of Riemann’s theory of elliptic and Abelian functions, which Stahl himself said derived from Riemann’s lectures of 1856 and 1861. The title of the lecture course is closest to the one listed in Riemann’s Werke for 1861, which would make them Hattendorff’s copy. The simplest interpretation is that these notes are of a course Riemann gave in 1855/56 with later additions made by Schering for his own use.

  33. 33.

    Casorati recorded his questions and Roch’s answers in separate sheets held in Casorati’s Nachlass in Pavia. A picture of one of them is given in Neuenschwander (1978b, 19). It deals with the Riemann surface associated with the equation s 3 − s + z = 0 and offers an intuitive drawing of it, see Fig. 5.3.

  34. 34.

    His sketchy argument was later refined in Tonelli (1875).

  35. 35.

    See Riemann (1857c, 134).

  36. 36.

    Hurwitz’s contribution is the formula 2P − 2 = w + n(2p − 2), where P is the genus of a Riemann surface that is an n-fold cover of a Riemann surface of genus p branched at points \(a_{1},a_{2},\ldots,a_{w}\) at which \(c_{1},c_{2},\ldots,c_{w}\) leaves come together, so the total branching order is \(W = (n - c_{1}) + (n - c_{2}) + \cdots + (n - c_{w})\). It is given in Hurwitz (1893, 416), reprinted in Mathematische Werke, I, nr. XXIII, 391–430, see p. 404, not in XXI, p. 376 as stated in (Freudenthal, 1972, 572).

  37. 37.

    See Mumford (1975).

  38. 38.

    Monodromy matrices were used in Hermite (1851, 279), the term monodromy group first appears in Jordan (1870, 278).

  39. 39.

    In this connection, see Wirtinger’s ICM 1904 address (Wirtinger 1905) for an account of just how many later discoveries were foreshadowed by Riemann’s work on the hypergeometric equation.

  40. 40.

    See Riemann (1990, 19).

  41. 41.

    See his letter to Encke in Gauss, Werke (2, 444–447) of 1849, where he recalls making this observation in 1792 or 1793.

  42. 42.

    See Edwards (1974, 18). The necessary argument was first provided in Hadamard (1893).

  43. 43.

    This estimate was not to be proved until (von Mangoldt 1905).

  44. 44.

    It is one of the few Hilbert problems to resist solution, and is now one of the million dollar prizes offered by the Clay Mathematics Institute.

  45. 45.

    The term by term evaluation was first shown to be permissible in Landau (1908).

  46. 46.

    See the books by Titchmarsh, Edwards, and Patterson, and the more popular accounts by Derbyshire and du Sautoy.

  47. 47.

    For a commentary, see Gray (2006).

  48. 48.

    See their papers listed in the Bibliography.

  49. 49.

    See their papers listed in the Bibliography.

  50. 50.

    See Gray (1998).

  51. 51.

    Plücker, von Staudt and other geometers dealt with them in terms of automorphisms of the surface of period 2 with no real fixed points, see Gray (1994) and below, p. 127.

  52. 52.

    Thus Klein wrote in his Entwicklung, (1926–1927, 1, 264), that Helmholtz once said to him “For us physicists, Dirichlet’s principle remains a proof”. On Maxwell, see his reliance on Green’s work in his A Treatise on Electricity and Magnetism, Chapter IV.

  53. 53.

    Friedrich Prym took his doctorate in 1863 officially from the University of Berlin although he is best regarded as a student of Riemann’s. He became a professor for some years in Zurich before becoming a professor at Würzburg in 1869, where he remained until 1909. He worked for most of his life on the theory of theta functions of several variables and a related class of functions today called Prym functions in his honour.

  54. 54.

    For an instructive comparison of Prym’s counter-example and the later and much better-known work of Hadamard on this topic, see Maz’ya and Shaposhnikova (1998, 373–377).

  55. 55.

    Schlömilch, ever the active editor, eventually published half of Roch’s 18 papers. Schlömilch had administrative responsibility for instruction at schools and colleges in Saxony and was an advisor to the publishing house of Teubner, Leipzig; see Stubhaug (2002, 333).

  56. 56.

    With a thesis entitled Über die Darstellung von Functionen dreier Variablen durch Potentialausdrücke [etc].

  57. 57.

    Some of this information comes from the web-site http://www.mathematik.uni-halle.de/history/roch/index.html.

  58. 58.

    See Clebsch and Gordan (1866, v–vi).

  59. 59.

    Roch (1866b, 39).

  60. 60.

    See Roch’s review (Roch 1866c).

  61. 61.

    See Simart (1882).

  62. 62.

    This information comes from Gispert (1991, 325–338), the report on Poincaré’s thesis is on p. 331, the report on Simart’s thesis is on p. 335.

  63. 63.

    Dini, Arzelà, Pincherle, Bianchi, Ricci Curbastro, Pieri, Volterra and Enriques were among them.

  64. 64.

    The relevant letters are kept in Betti’s Nachlass in Pisa. See Bottazzini (1977a).

  65. 65.

    See Bölling (1993, 253). This letter and the letters of Schwarz to Weierstrass we will quote below are kept in the library of the Mittag-Leffler Institute. We would like to thank the former Director of the Institute, Dr. Laksov, for his kind permission to publish excerpts of them.

  66. 66.

    This paper originated in a course on this subject Betti gave in 1861/62. He lectured on this subject several more times in the 1860s. Lecture notes for his 1862/63 course, taken by Ulisse Dini and held in the library of the Department of Mathematics of the University of Florence, have been published in Petti (2002). The same library also holds Antonio Roiti’s notes of Betti’s 1867/68 course, published in Petti (2003).

  67. 67.

    With this Riemann referred to his (1857c) appeared in Crelle’s Journal whose editor-in-chief was Borchardt.

  68. 68.

    “I’ve spoken with Riemann once again about the connection of spaces and I’ve got an exact idea of it”, Betti wrote to Tardy on Oct, 6th 1863 (quoted in Bottazzini 1983, 256). Most of the content of Betti (1870) is included in a letter to Tardy on October 16th 1863. For an English translation see Weil (1979b).

  69. 69.

    Betti to Casorati on January 26th, 1866. The letters from Betti to Casorati are kept in Casorati’s Nachlass in Pavia. We would like to thank Ing. A. Gabba for his kind permission to publish excerpts of them.

  70. 70.

    For an account of the many and various interpretations of the imaginary in geometry, see Coolidge (1924).

  71. 71.

    See Lüroth (18751877), Stolz (1871), and Nabonnand (2008).

  72. 72.

    See Klein (1874), recapitulated it in his 1926–1927 Entwicklung.

  73. 73.

    For the response of the analysts see Bottazzini, The Higher Calculus. For the geometers’ response, see Gray (1989).

  74. 74.

    To be found in Riemann (1990, 519–536).

  75. 75.

    They occur in families or groupings of six pairs, any two of which reduce the equation to Plücker’s form; they are recognised as the sets of characteristics all pairs of which have the same sum. Sets of 4 bitangents determine 8 points on both the curve and a conic, sets of 6 are connected with cubics, and so forth, according to a rich geometric theory developed in Hesse (1855).

  76. 76.

    Clebsch, more precisely, considered the sums of integrals to be zero modulo the period lattice.

  77. 77.

    This is an improvement on the Weierstrass gap theorem; see Sect. 6.8.6.

  78. 78.

    Modern interpretations of Clifford’s theorem deduce from it results about the canonical forms of curves of low genus, such as every non-hyperelliptic curve of genus 3 embeds in \({\mathbb{C}\mathbb{P}}^{2}\) as a smooth quartic, every non-hyperelliptic curve of genus 4 embeds in \({\mathbb{C}\mathbb{P}}^{3}\) as a curve of degree 6 which is the intersection of a quadratic and a cubic surface, and all but an identifiable class of non-hyperelliptic curves of genus 5 embed in \({\mathbb{C}\mathbb{P}}^{4}\) as a smooth curve of degree 8 that is the intersection of three quadrics. See Miranda (1995, Chap. VII).

  79. 79.

    Gray (19891998) are a start, see the references there, notably (Dieudonné 1974).

References

  • Ahlfors, L. 1953a. Development of the theory of conformal mapping and Riemann surfaces through a century. Annals of mathematical studies 30, 3–13.

    MathSciNet  MATH  Google Scholar 

  • Beltrami, E. 1868a. Saggio di interpretazione della geometria non–euclidea. G. di Mat. 6, 285–315 in Op. Mat. 1, 374–405.

    Google Scholar 

  • Beltrami, E. 1868b. Teoria fondamentale degli spazii di curvatura costante. Ann. di Mat. (2) 2, 232–255 in Op. Mat. 1, 406–430.

    Google Scholar 

  • Betti, E. 1859. Fondamenti di una teorica delle funzioni di una variabile complessa (Traduzione della dissertazione inaugurale di B. Riemann). Ann. di Mat. 2, 288–304; 337–356 in Op. Mat. 1, 190–227.

    Google Scholar 

  • Betti, E. 1860–1861. La teorica delle funzioni ellittiche. Ann. di Mat. 3, 65–159, 298–310; 4, 26–45, 57–70, 297–336 in Op. Mat. 1, 228–412.

    Google Scholar 

  • Betti, E. 1862. Sopra le funzioni algebriche di una variabile complessa. Annali delle Università toscane 7, 101–130 in Op. Mat. 2, 16–44.

    Google Scholar 

  • Betti, E. 1870. Sopra gli spazi di un numero qualunque di dimensioni. Ann. di Mat. (2) 4, 140–158 in Op. Mat. 1, 273–290.

    Google Scholar 

  • Bölling, R. (ed.). 1993. Briefwechsel zwischen Karl Weierstrass und Sofja Kowalewskaja. Akademie–Verlag, Berlin.

    MATH  Google Scholar 

  • Bottazzini, U. 1977a. The mathematical papers of Enrico Betti in the Scuola Normale Superiore of Pisa. HM 4, 207–209.

    MathSciNet  MATH  Google Scholar 

  • Bottazzini, U. 1977b. Riemann’s Einfluss auf E. Betti und F. Casorati. AHES 18, 27–37.

    Google Scholar 

  • Bottazzini, U. 1983. Enrico Betti e la formazione della scuola matematica pisana. In (Grugnetti and Montaldo 1983, 229–270)

    Google Scholar 

  • Bottazzini, U. 2003. Complex function theory, 1780–1900. In (Jahnke 2003, 213–259).

    Google Scholar 

  • Bottazzini, U. and R. Tazzioli. 1995. Naturphilosophie and its role in Riemann’s mathematics. Revue d’histoire des mathématiques 1, 3–38.

    MathSciNet  MATH  Google Scholar 

  • Brill, A. and M. Noether. 1874. Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie. Math. Ann. 7, 269–316.

    Article  MATH  Google Scholar 

  • Brill, A. and M. Noether. 1894. Bericht über die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit. JDMV 3, 107–566.

    MATH  Google Scholar 

  • Briot, Ch. 1879. Théorie des fonctions abéliennes. Gauthier–Villars, Paris.

    Google Scholar 

  • Briot, Ch. and J.-C. Bouquet. 1859. Théorie des fonctions doublement périodiques et, en particulier, des fonctions elliptiques. Mallet–Bachelier, Paris. German trl. as Briot und Bouquet’s Theorie der doppeltperiodischen Functionen und insbesondere der elliptischen Transcendenten mit Benutzung dahin einschlagender Arbeiten deutscher Mathematiker dargestellt von H. Fisher. Druck u. Verlag H. W. Schmidt, Halle 1862.

    Google Scholar 

  • Casorati, F. 1868a. Teorica delle funzioni di variabili complesse. Fusi, Pavia.

    Google Scholar 

  • Cauchy, A.-L. 1846i. Considérations nouvelles sur les intégrales définies qui s’étendent à tous les points d’une courbe fermée, et sur celles qui sont prises entre des limites imaginaires. CR 23, 689–704 in O.C. (1) 10, 153–168.

    Google Scholar 

  • Cauchy, A.-L. 1851g. Rapport sur un mémoire présenté à l’Académie par M. Puiseux et intitulé: ‘Recherches sur les fonctions algébriques’. CR 32, 276–284 in O.C. (1) 11, 325–335.

    Google Scholar 

  • Cayley, A. 1878. On the geometrical representation of imaginary variables by a real correspondence of two planes. Proc. LMS 9, 31–39 in CMP 10, 316–323.

    Google Scholar 

  • Cerroni, C. and L. Martini. 2009. Il carteggio Betti-Tardy (1850–1891). Mimesis, Milano.

    Google Scholar 

  • Chebyshev, P.L. 1850. Mémoire sur les nombres premiers. (Présenté à l’Académie Imperiale de St. Pétersbourg en 1850). J de math. 17 (1852) 366–390 in Oeuvres 1, 51–70.

    Google Scholar 

  • Christoffel, E.B. 1879. Ueber die canonische Form der Riemannschen Integrale erster Gattung. Ann. di Mat. (2) 9, 240–301 in Ges. Mat. Abh. 127–184.

    Google Scholar 

  • Clebsch, R.F.A. 1864. Ueber die Anwendung der Abelschen Functionen in der Geometrie. JfM 63, 189–243.

    MATH  Google Scholar 

  • Clebsch, R.F.A. and P. Gordan. 1866. Theorie der Abelschen Functionen. Teubner, Leipzig.

    Google Scholar 

  • Clifford, W.K. 1877. On the canonical form and dissection of a Riemann’s surface. Proc. LMS 8, 292–304 in Math. Papers, 241–254.

    Google Scholar 

  • Clifford, W.K. 1878. On the classification of loci. Phil. Trans. Roy. Soc. London, Part II, 663–681 in Math. Papers, 305–331.

    Google Scholar 

  • Coolidge, J.L. 1924. The geometry of the complex domain. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Darrigol, O. 2000. Electrodynamics from Ampère to Einstein. OUP, Oxford.

    MATH  Google Scholar 

  • Dedekind, R. 1876. Bernhard Riemann’s Lebenslauf. In (Riemann 1876, 507–526) also in (Riemann 1990, 571–590). Engl. trl. in (Riemann 2004, 518–534).

    Google Scholar 

  • Dedekind, R. and H. Weber. 1882. Theorie der algebraischen Funktionen einer Veränderlichen. JfM 92, 181–290 in Ges. Math. Werke 1, 238–349.

    Google Scholar 

  • Dieudonné, J. 1974. Cours de géométrie algébrique. 2 vols. Presses Universitaires de France, Paris. Engl. trl. as History of algebraic geometry: an outline of the history and development of algebraic geometry. Wadsworth, Belmont 1985.

    Google Scholar 

  • Dirichlet, P.G.L. 1876. Vorlesungen über die im ungekehrten Verhältniss des Quadrats der Entfernung wirkenden Kräfte. Grube, F. (ed.). Teubner, Leipzig.

    Google Scholar 

  • Dirichlet, P.G.L. 1904. Vorlesungen über die Lehre von den einfachen und mehrfachen bestimmten Integrale. Arendt, G. (ed.). Vieweg, Braunschweig.

    Google Scholar 

  • Dugac, P. 1973. Éléments d’analyse de Karl Weierstrass. AHES 10, 41–176.

    Article  MathSciNet  MATH  Google Scholar 

  • Dugac, P. (ed.). 1984. Lettres de Charles Hermite à Mittag-Leffler (1884–1883). Cahiers du Séminaire d’Histoire des Mathématiques 5, 49–285.

    Google Scholar 

  • Durège, H. 1864. Elemente der Theorie der Functionen einer complexen veränderlichen Grösse. Mit besonderer Berücksichtigung der Schöpfungen Riemanns, [etc]. Teubner, Leipzig. Four subs. editions. Engl. trl. of the 4th ed. as Elements of the theory of functions of a complex variable with especial reference to the methods of Riemann. Norwood Press, Norwood, Mass. 1896. Rep. University of Michigan Reprint series, 2009.

    Google Scholar 

  • Edwards, H.M. 1974. Riemann’s zeta function. Academic Press, New York. Rep. Dover, New York 2001.

    Google Scholar 

  • Elstrodt, J. and J. Ullrich. 1999. A real sheet of complex Riemannian function theory: a recently discovered sketch in Riemann’s own hand. HM 26, 268–288.

    MathSciNet  MATH  Google Scholar 

  • Fischer, G. (ed.). 1986. Mathematische Modelle – Mathematical Models. Vieweg, Braunschweig.

    Google Scholar 

  • Freudenthal, H. 1972. Hurwitz, Adolf. DSB 6, 570–573.

    Google Scholar 

  • Fuchs, L.I. 1874. Über Relationen, welche für die zwischen je zwei singulären Punkten erstreckten Integrale der Lösungen linearer Differentialgleichungen stattfinden. JfM 76, 177–213 in Ges. Math. Werke 1, 415–456.

    Google Scholar 

  • Gauss C.F. 1812a. Disquisitiones generales circa seriem infinitam \(1 + \frac{\alpha.\beta } {1.\gamma }x + \frac{\alpha (\alpha +1)\beta (\beta +1} {1.2.\gamma (\gamma +1)} xx + etc.\) Pars prior. Comm. Soc. Göttingen 2, 46pp. in Werke 3, 123–162.

    Google Scholar 

  • Gauss C.F. 1812b. Determinatio seriei nostrae per aequationem differentialem secundi ordinis. Ms. in Werke 3, 207–230.

    Google Scholar 

  • Gauss, C.F. 1816. Demonstratio nova altera theorematis omnem functionem [etc]. Comm. Soc. Göttingen 3, 107–134 in Werke 3, 31–56.

    Google Scholar 

  • Gauss, C.F. 1825. Allgemeine Auflösung der Aufgabe: die Theile einer gegebenen Fläche auf einer andern gegebenen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinisten Theilen ähnlich wird. Astronomische Abhandlungen 3, 1–30 in Werke 4, 189–216.

    Google Scholar 

  • Gauss C.F. 1840. Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung Anziehung– und Abstossungs–Kräfte. Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1839, 1–51. Gauss, C.F. and W. Weber (eds). Weidmannsche Buchhandlung, Leipzig in Werke 5, 195–240.

    Google Scholar 

  • Gispert. H. 1991. La France mathématique. Cahiers d’histoire et de philosophie des sciences 34.

    Google Scholar 

  • Goursat, E. 1881. Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique. Annales ENS (2) 10, 3–142 (Supplément).

    Google Scholar 

  • Gray, J.J. 1986. Linear differential equations and group theory from Riemann to Poincaré. Birkhäuser, Boston and Basel. 2nd ed. as (Gray 2000a).

    Google Scholar 

  • Gray, J.J. 1989. Algebraic geometry in the late nineteenth century. In (Rowe et al. 1989–1994, 1, 361–385).

    Google Scholar 

  • Gray, J.J. 1994. On the history of the Riemann mapping theorem. Suppl. Rend. Palermo (2) 34, 47–94.

    Google Scholar 

  • Gray, J.J. 1997. Riemann’s lecture courses on complex function theory. Mathematical Intelligencer 19, 58–62.

    Article  MATH  Google Scholar 

  • Gray, J.J. 1998. The Riemann–Roch theorem and geometry, 1854–1914. Proceedings of the International Congress of Mathematicians, Berlin 1998. Documenta Mathematica, 3, 511–522.

    Google Scholar 

  • Gray, J.J. 2000a. Linear differential equations and group theory from Riemann to Poincaré. Birkhäuser, Boston and Basel.

    MATH  Google Scholar 

  • Gray, J.J. 2006. Worlds out of nothing; a course on the history of geometry in the 19th century. Springer, London; 2nd, corrected edition 2010.

    Google Scholar 

  • Hadamard, J. 1893. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considerée par Riemann (Mémoire couronné par l’Académie, Grand Prix des sciences mathématiques). J de math. (4) 9, 171–215 in Oeuvres 1, 103–147.

    Google Scholar 

  • Hermite, Ch. 1851. Sur les fonctions algébriques. CR 32, 358–361 in Oeuvres 1, 276–280.

    Google Scholar 

  • Hesse, L. O. 1855. Ueber die Doppeltangenten der Curven vierter Ordnung. JfM 49, 243–264 in Ges. Werke, 319–344.

    Google Scholar 

  • Hurwitz, A. 1893. Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 in Math. Werke 1, 391–430.

    Google Scholar 

  • Jacobi, C.G.J. 1996. Vorlesungen über analytische Mechanik, Berlin 1847/48. Pulte, H. (ed.). Vieweg, Braunschweig.

    Google Scholar 

  • Jordan, C. 1870. Traité des substitutions et des équations algébriques. Gauthier–Villars, Paris. Rep. Gauthier–Villars, Paris 1957. Rep. Gabay, Paris 1989.

    Google Scholar 

  • Klein, C.F. 1874. Über eine neue Art der Riemannschen Flächen. Math. Ann. 7, 558–566 in Ges. Math. Abh. 2, 89–98.

    Google Scholar 

  • Klein, F. 1882a. Ueber Riemanns Theorie der algebraischen Funktionen und ihrer Integrale. Teubner, Leipzig in Ges. Math. Abh. 3, 499–573. Engl. trl. as On Riemann’s theory of algebraic functions and their integrals. Macmillan and Bowes, Cambridge. Rep. Dover, New York 1963.

    Google Scholar 

  • Klein, C.F. 1892. Riemannsche Flächen. Vorlesungen, gehalten in Göttingen 1891/92. (lith.) Göttingen. 2nd ed. Teubner, Leipzig 1906. New ed. Eisenreich, G. and W. Purkert (eds). Teubner, Leipzig 1986.

    Google Scholar 

  • Klein, C.F. 1894b. Lectures on mathematics. The Evanston colloquium. MacMillan, New York.

    Google Scholar 

  • Klein, C.F. 1926–1927. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. Courant, R. and O. Neugebauer (eds). 2 vols. Springer, Berlin. Rep. Chelsea, New York 1967.

    Google Scholar 

  • Kraus, L. 1880. Note über aussergewöhnliche Specialgruppen auf algebraischen Curven. Math. Ann. 16, 245–259.

    Article  MathSciNet  Google Scholar 

  • Kummer, E.E. 1836. Über die hypergeometrische Reihe [etc]. JfM 15, 39–83; 127–172 in Coll. Papers 2, 75–166.

    Google Scholar 

  • Landau, E. 1908. Nouvelle démonstration pour la formule de Riemann [etc]. Annales ENS (3) 25, 399–442.

    Google Scholar 

  • Laugwitz, D. and E. Neuenschwander. 1994. Riemann and the Cauchy-Hadamard formula for the convergence of power series. HM 21, 64–70.

    MathSciNet  MATH  Google Scholar 

  • Loria, G. 1915. Commemorazione del Socio Placido Tardy. Rend. Lincei 24, 505–531.

    MATH  Google Scholar 

  • Lüroth, J. 1875. Das Imaginäre in der Geometrie und das Rechnen mit Würfen. Darstellung und Erweiterung der v. Staudt’schen Theorie. Math. Ann. 8, 145–214.

    Google Scholar 

  • Lüroth, J. 1877. Das Imaginäre in der Geometrie und das Rechnen mit Würfen. Zweite Abhandlung. Math. Ann. 11, 84–110.

    Google Scholar 

  • Mangoldt, H. von. 1905. Zur Verteilung der Nullstellen der Riemannschen Funktion ξ(t). Math. Ann. 60, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Markushevich, A. I. 1996. Analytic function theory. In (Kolmogorov and Yushkevich 1996, 119–272).

    Google Scholar 

  • Maz’ya, V. and T. Shaposhnikova. 1998. Jacques Hadamard, a universal mathematician. HMath 14. Providence, RI.

    Google Scholar 

  • Menchoff, D. 1936. Les conditions de monogeneité. Hermann, Paris.

    Google Scholar 

  • Miranda, R. 1995. Algebraic curves and Riemann surfaces. AMS, Providence, RI.

    MATH  Google Scholar 

  • Monna, A.F. 1975. Dirichlet’s principle. A mathematical comedy of errors and its influence on the development of analysis. Oosthoek, Scheltema & Holkema, Utrecht.

    MATH  Google Scholar 

  • Montel, P. 1913. Sur les différentielles totales et les fonctions monogènes. CR 156, 1820–1822.

    MATH  Google Scholar 

  • Mumford, D. 1975. Curves and their Jacobians. The University of Michigan Press, Ann Arbor, Mich.

    MATH  Google Scholar 

  • Nabonnand, P. 2008. La théorie des Würfe de von Staudt – Une irruption de l’algèbre dans la géométrie pure. AHES 62, 201–242.

    Article  MathSciNet  MATH  Google Scholar 

  • Narasimhan, R. and Y. Nievergelt. 2001. Complex analysis in one variable. 2nd ed. Birkhäuser, Boston, Mass.

    Book  MATH  Google Scholar 

  • Neuenschwander, E. 1978b. Der Nachlass von Casorati (1835–1890) in Pavia. AHES 19, 1–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Neuenschwander, E. 1980. Riemann und das “Weierstrassche” Prinzip der analytischen Fortsetzung durch Potenzreihen. JDMV 82, 1–11.

    MathSciNet  MATH  Google Scholar 

  • Neuenschwander, E. 1981a. Lettres de Bernhard Riemann à sa famille. Cahiers du Séminaire d’Historie des Mathématiques 2, 85–131.

    MathSciNet  Google Scholar 

  • Neuenschwander, E. 1981b. Studies in the history of complex function theory, II. Interactions among the French school, Riemann, and Weierstrass. Bull. AMS (2) 5, 87–105.

    Google Scholar 

  • Neuenschwander, E. 1987. Riemanns Vorlesungen zur Funktionentheorie. Allgemeiner Teil. Preprint Nr. 1086. Technische Hochschule Darmstadt, Fachbereich Mathematik.

    Google Scholar 

  • Neuenschwander, E. 1988. A brief report on a number of recently discovered sets of notes on Riemann’s lectures and on the transmission of the Riemann Nachlass. HM 15, 101–113. Rep. in (Riemann 1990, 855–867).

    Google Scholar 

  • Neumann, C.A. 1865a. Vorlesungen über Riemann’s Theorie der Abel’schen Integrale. Teubner, Leipzig. 2nd ed. Teubner, Leipzig 1884. Rep. BiblioLife 2009.

    Google Scholar 

  • Petti, R. (ed.). 2002. Un corso di analisi complessa tenuto da Betti a Pisa nella redazione di Ulisse Dini. Dipartimento di Matematica ‘U. Dini’, Firenze. Quaderno 2002/9.

    Google Scholar 

  • Petti, R. (ed.). 2003. Il corso di analisi superiore tenuto da Enrico Betti nell’anno 1867–68. Dipartimento di Matematica ‘U. Dini’, Firenze. Quaderno 2003/15.

    Google Scholar 

  • Plücker, J. 1839. Theorie der algebraischen Curven. Marcus, Bonn.

    Google Scholar 

  • Plücker, J. 1847. Ueber Curven dritter Ordnung und analytische Beweisführung. JfM 34, 329–336, in Ges. Math. Abh. 1, 404–412.

    Google Scholar 

  • Poincaré, H. 1879. Sur les propriétés des fonctions définies par les équations aux différences partielles. Thèse. Gauthier–Villars, Paris in Oeuvres 1, XLIX–CXXIX.

    Google Scholar 

  • Prym, F.E. 1871. Zur Integration der Differentialgleichung \(\frac{{\partial }^{2}u} {\partial {x}^{2}} + \frac{{\partial }^{2}u} {\partial {y}^{2}} = 0\). JfM 73, 340–364.

    Google Scholar 

  • Prym, F.E. 1877. Beweis eines Riemannschen Satzes. JfM 83, 251–261.

    MATH  Google Scholar 

  • Remmert, R. 1998b. From Riemann surfaces to complex spaces. In Matériaux pour l’histoire des mathématiques au XX e siècle, 203–241. Societé Mathématique de France, Paris.

    Google Scholar 

  • Riemann, G.F.B. 1851. Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation. Göttingen. In

    Google Scholar 

  • Riemann, G.F.B. 1854b. Ueber die Hypothesen welche der Geometrie zu Grunde liegen. Göttingen Abh. 13 (1867) 133–152 in Werke, 304–319. Engl. trl. in (Riemann 2004, 257–272).

    Google Scholar 

  • Riemann, G.F.B. 1855. Zur Theorie der Nobili’schen Farbenringe. Annalen der Physik und Chemie 95, 130–139 in Werke, 87–98. Engl. trl. in (Riemann 2004, 49–56).

    Google Scholar 

  • Riemann, G.F.B. 1857a. Beiträge zur Theorie der durch Gauss’sche Reihe F(α β, γ, x) darstellbaren Functionen. Göttingen Abh. 7, 3–22 in Werke, 99–115. Engl. trl. in (Riemann 2004, 57–76).

    Google Scholar 

  • Riemann, G.F.B. 1857b. Selbstanzeige der vorstehenden Abhandlung. Göttingen Nachr. 6–8 in Werke, 116–119. Engl. trl. in (Riemann 2004, 77–78).

    Google Scholar 

  • Riemann, G.F.B. 1857c. Theorie der Abelschen Functionen. JfM 54, 115–155, in Werke, 120–144. Engl. trl. in (Riemann 2004, 79–134).

    Google Scholar 

  • Riemann, G.F.B. 1858. Ein Beitrag zur Electrodynamik. Annalen der Physik und Chemie 131 (1867) 237–243 in Werke, 288–293. Engl. trl. in (Riemann 2004, 273–278).

    Google Scholar 

  • Riemann, G.F.B. 1859. Ueber die Anzahl der Primzahlen unter einer gegebene Grösse. Monatsberichte Berlin, 671–680 in Werke, 177–187. Engl. trl. in (Riemann 2004, 135–144).

    Google Scholar 

  • Riemann, G.F.B. 1860. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Göttingen Abh. 8, 43–65 in Werke, 157–175. Engl. trl. in (Riemann 2004, 145–165).

    Google Scholar 

  • Riemann, G.F.B. 1863. Sullo svolgimento del quoziente di due serie ipergeometriche in frazione continua infinita. Ms. Werke, 456–462. Engl. trl. in (Riemann 2004, 409–416).

    Google Scholar 

  • Riemann, G.F.B. 1865. Ueber das Verschwinden der Thetafunctionen. JfM 65, 161–172 in Werke, 244–256. Engl. trl. in (Riemann 2004, 203–218).

    Google Scholar 

  • Riemann, G.F.B. 1876b. Gleichgewicht der Electricität auf Cylindern mit kreisförmigem Querschnitt und parallel Axen. Conforme Abbildung von durch Kreise begrenzten Figuren. Ms. Werke, 472–476. Engl. trl. in (Riemann 2004, 429–434).

    Google Scholar 

  • Riemann, G.F.B. 1899. Vorlesungen über elliptische Functionen mit Zusätzen herausgegeben von H. Stahl. Teubner, Leipzig. [Not in Werke].

    Google Scholar 

  • Riemann, G.F.B. 1990. Bernhard Riemanns gesammelte mathematische Werke und wissenschaftliche Nachlass. 3rd. ed. Narasimhan, R. (ed.). Springer, New York.

    Google Scholar 

  • Riemann, G.F.B. 1996. Riemanns Einführung in die Funktionentheorie. Eine quellenkritische Edition seiner Vorlesungen mit einer Bibliographie zur Wirkungsgeschichte der Riemannschen Funktionentheorie. Neuenschwander, E. (ed.). Göttingen Abh. (3) 44.

    Google Scholar 

  • Roch, G. 1863a. Ueber Functionen complexer Grössen. ZMP 8, 12–26; 183–203.

    Google Scholar 

  • Roch, G. 1863b. De theoremate quodam circa functiones Abelianas. Habilitationsschrift, Halle.

    Google Scholar 

  • Roch, G. 1865a. Ueber die Anzahl der willkürlichen Constanten in algebraischen Functionen. JfM 64, 372–376.

    MATH  Google Scholar 

  • Roch, G. 1865c. Ueber Functionen complexer Grössen. ZMP 10, 169–194.

    Google Scholar 

  • Roch, G. 1866a. Ueber die Doppeltangenten an Curven vierter Ordnung. JfM 66, 97–120.

    MATH  Google Scholar 

  • Roch, G. 1866b. [Review of C. Neumann, Vorlesungen über Riemann’s Theorie der Abel’schen Integrale, 1865]. ZMP 11, 33–39.

    Google Scholar 

  • Roch, G. 1866c. [Review of C. Neumann, Das Dirichlet’sche Princip in seiner Andwendung auf die Riemann’schen Flächen, 1865]. ZMP 11, 39–41.

    Google Scholar 

  • Schläfli, L. 1870. Über die Gauss’sche hypergeometrische Reihe. Math. Ann. 3, 286–295 in Ges. Math. Abh. 3, 153–162.

    Google Scholar 

  • Schlömilch, O. 1866. Vorlesungen über einzelne Theile der höheren Analysis gehalten an der K.S. Polytechnischen Schule zu Dresden. Vieweg & Sohn, Braunschweig.

    Google Scholar 

  • Scholz, E. 1982. Herbart’s influence on Bernhard Riemann. HM 9, 413–440.

    MathSciNet  MATH  Google Scholar 

  • Scholz, E. 1999. The concept of a manifold, 1850–1950. In (James 1999, 25–64).

    Google Scholar 

  • Seidel, L. 1871. Ueber eine eigenthümliche Form von Functionen einer complexen Variabeln und über transcendente Gleichungen, die keine Wurzeln haben. JfM 73, 297–304.

    MATH  Google Scholar 

  • Siegel, C.L. 1932. Über Riemanns Nachlass zur analytischen Zahlentheorie. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik 2, 45–80 in Ges. Abh. 1, 275–310. Also in (Riemann 1990, 768–805).

    Google Scholar 

  • Simart, G. 1882. Commentaire sur deux mémoires de Riemann relatifs à la théorie générale des fonctions et au principe de Dirichlet. Gauthier-Villars, Paris.

    Google Scholar 

  • Stahl, H. 1896. Theorie der Abel’schen Functionen. Teubner, Leipzig.

    Google Scholar 

  • Stolz, O. 1871. Die geometrische Bedeutung der complexen Elemente in der analytischen Geometrie. Math. Ann. 4, 416–442.

    Article  MathSciNet  MATH  Google Scholar 

  • Stubhaug, A. 2002. The mathematician Sophus Lie: It was the audacity of my thinking. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Tonelli, A. 1875. Zur Lehre vom Zusammenhange. Göttingen Nachr. 387–390.

    Google Scholar 

  • Weierstrass, K.T.W. 1880c. Zur Funktionenlehre. Monatsberichte Berlin, 719–743. Nachtrag. Monatsberichte Berlin (1881) 228–230. Rep. in (Weierstrass 1886, 67–101, 102–104). In Math. Werke 2, 201–233. French trl. as: Remarques sur quelques points de la théorie des fonctions analytiques. Bull. sci. math. (2) 5 (1881) 157–183.

    Google Scholar 

  • Weil, A. 1979b. Riemann, Betti and the birth of topology. AHES 20, 91–96, and Postscript. AHES 21, 387.

    Google Scholar 

  • Wirtinger, W. 1905. Riemanns Vorlesungen über die hypergeometrische Reihe und ihre Bedeutung. Verhandlungen des dritten internationalen Mathematiker–Kongresses, Heidelberg 1904, 121–139. Teubner, Leipzig.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bottazzini, U., Gray, J. (2013). Chapter 5 Riemann’s Geometric Function Theory. In: Hidden Harmony—Geometric Fantasies. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5725-1_6

Download citation

Publish with us

Policies and ethics