Chapter 4 Complex Functions and Elliptic Integrals

  • Umberto Bottazzini
  • Jeremy Gray
Chapter
Part of the Sources and Studies in the History of Mathematics and Physical Sciences book series (SHMP)

Abstract

In this chapter we consider how elliptic function theory and complex variable theory were finally drawn together in the 1830s and 1840s. As the recognition of the importance of the work of Abel and Jacobi grew, mathematicians came to feel that it was unsatisfactory to base the theory of elliptic functions on the inversion of many-valued integrals. One alternative would have been to adopt and develop Cauchy’s theory of complex integrals. By and large this was not done, and it is interesting to examine why. The study of elliptic integrals was felt by many to be fraught with ambiguity because of the square root in the integrand. Moreover, Cauchy’s system of definitions, based on his newly defined concepts of limit, continuity, differentiability, and integrability, was incompatible with talk of many-valued functions—Cauchy did not define continuity for a many-valued function, and indeed a many-valued function cannot be continuous according to Cauchy’s use of the term. Although a doubly periodic function is a meromorphic function defined on the whole of the complex plane, an elliptic integral makes better sense on something like a Riemann surface (a torus in this case). Thus the many-valued nature of an elliptic integral posed a challenge to mathematicians throughout the 1830s and 1840s. So the perceived problem with the foundations did not meet with a ready answer in the newly emerging theory of complex functions. Matters were to be worse with hyperelliptic integrals, because the corresponding inverse functions could not be treated as multiply-periodic functions in the plane.

Keywords

Tuberculosis Assure Sine Cane Rosen 

References

  1. Abel, N.H. 1828c. Remarques sur quelques propriétés générales d’une certaine sorte de fonctions transcendantes. JfM 3, 313–323 in O.C. 1, 444–456.Google Scholar
  2. Abel, N.H. 1829a. Démonstration d’une propriété générale d’une certaine classe de fonctions transcendantes. JfM 4, 200–201 in O.C. 1, 515–517.Google Scholar
  3. Abel, N.H. 1902. Correspondance d’Abel comprenant ses lettres et celles qui lui ont été adressées. Lettres relatives à Abel. In (Holst, Størmer and Sylow 1902, 1–135). (Separate pagination).Google Scholar
  4. Apostol, T.M. 1976. Introduction to analytic number theory. Springer, New York.MATHCrossRefGoogle Scholar
  5. Appell, P. 1879. Sur une interprétation des valeurs imaginaires du temps en mécanique. CR 87, 1074–1077.MATHGoogle Scholar
  6. Arnold, V.I. 1990. Huygens & Barrow, Newton & Hooke. Birkhäuser, Basel–Boston–Berlin.CrossRefGoogle Scholar
  7. Baker, A. 1966. Linear forms in the logarithms of algebraic numbers. Mathematika 13, 204–216.MATHCrossRefGoogle Scholar
  8. Baker, A. 1971. Imaginary quadratic fields with class number two. Annals of mathematics (2) 94, 139–152.Google Scholar
  9. Belhoste, B. 1996. Autour d’un mémoire inédit: la contribution d’Hermite au développement de la théorie des fonctions elliptiques. Revue d’histoire des mathématiques 2, 1–66.MathSciNetMATHGoogle Scholar
  10. Belhoste, B. and J. Lützen. 1984. Joseph Liouville et le Collège de France. Revue d’histoire des sciences 37, 255–304.MathSciNetMATHCrossRefGoogle Scholar
  11. Berndt, B.C. and R.J. Evans. 1981. The determination of Gauss sums. Bull. AMS (2) 5, 107–129.Google Scholar
  12. Binet, J. 1811. Sur la théorie des axes conjugués et des moments d’inertie des corps. Bull. Soc. Philom. 312–316. Extended version in J. Ec. Poly. 9 (1813) 41–67.Google Scholar
  13. Bottazzini, U. 1977c. Le funzioni a periodi multipli nella corrispondenza fra Hermite e Casorati. AHES 18, 39–88.MathSciNetCrossRefGoogle Scholar
  14. Brezinski, C. 1990. Hermite. Pére de l’analyse mathématique moderne. Cahiers d’histoire et de philosophie des sciences 32.Google Scholar
  15. Brill, A. and M. Noether. 1894. Bericht über die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit. JDMV 3, 107–566.MATHGoogle Scholar
  16. Broch, O. J. 1840. Sur quelques propriétés d’une certaine classe de fonctions transcendantes. JfM 20, 178–188.MATHGoogle Scholar
  17. Broch, O.J. 1842. Mémoire sur les fonctions de la forme [etc]. JfM 23, 145–195; 201–242.MATHGoogle Scholar
  18. Casorati, F. 1886a. Les fonctions d’une seule variable à un nombre quelconque de périodes. Acta 8, 345–359 in Opere 1, 223–238.Google Scholar
  19. Casorati, F. 1886b. Les lieux fondamentaux des fonctions inverses des intégrales Abéliennes [etc]. Acta 8, 360–386 in Opere 1, 239–265.Google Scholar
  20. Casorati, F. 1887. Sopra le coupures del sig. Hermite, i Querschnitte e le superficie di Riemann ed i concetti d’integrazione sì reale che complessa. Ann. di Mat. (2) 15, 223–234; 16, 1–20 in Opere 1, 385–418.Google Scholar
  21. Cauchy, A.-L. 1827e. Sur le développement des fonctions d’une seule variable en fractions rationnelles. Ex. Math. 2, 277–297 in O.C. (2) 7, 324–344.Google Scholar
  22. Cauchy, A.-L. 1840b. Méthode simple et nouvelle pour la détermination complète des sommes alternées formées avec les racines primitives des équations binômes. CR 10, 560–572 and J de math. 5, 154–168 in O.C. (1) 5, 152–166 and O.C. (2) 2, 24.Google Scholar
  23. Cauchy, A.-L. 1843d. Mémoire sur une certaine classe de fonctions transcendantes liées entre elles par un système de formules qui fournissent, comme cas particuliers, les développements des fonctions elliptiques en séries. CR 17, 640–651 in O. C. (1) 8, 65–76.Google Scholar
  24. Cauchy, A.-L. 1843e Mémoire sur les rapports entre les factorielles réciproques dont les bases varient proportionnellement, et sur la transformation des logarithmes de ces rapports en intégrales définies. CR 17, 779–787 in O. C. (1) 8, 87–97.Google Scholar
  25. Cauchy, A.-L. 1843f. Sur la réduction des rapports de factorielles réciproques aux fonctions elliptiques. CR 17, 825–837 in O. C. (1) 8, 97–110.Google Scholar
  26. Cauchy, A.-L. 1845a. Mémoire sur diverses propriétés remarquables et très générales des fonctions continues. CR 20, 375–395 in O.C. (1) 9, 32–53.Google Scholar
  27. Cauchy, A.-L. 1846i. Considérations nouvelles sur les intégrales définies qui s’étendent à tous les points d’une courbe fermée, et sur celles qui sont prises entre des limites imaginaires. CR 23, 689–704 in O.C. (1) 10, 153–168.Google Scholar
  28. Cayley, A. 1845b. On the inverse elliptic functions. Camb. math. J. 4, 257–277 in CMP 1, 136–155.Google Scholar
  29. Cayley, A. 1845c. Mémoire sur les fonctions doublement périodiques. J de math. 10, 385–420 in CMP 1, 156–183.Google Scholar
  30. Cooke, R. 1989. Abel’s theorem. In (Rowe et al. 1989–1994, 1, 389–421).Google Scholar
  31. Cox, D.A. 1989. Primes of the form x 2 + ny 2 : Fermat, class field theory and complex multiplication. John Wiley & Sons, New York.Google Scholar
  32. Davenport, H. 1967. Multiplicative number theory. Markham Publ. Co., Chicago. 2nd ed. Montgomery, H.L. (ed.). Springer, New York 1980. 3rd ed. Springer, New York 2000.Google Scholar
  33. Del Centina A. 2002. The manuscript of Abel’s Parisian memoir found in its entirety. HM 29, 65–69.MATHGoogle Scholar
  34. Del Centina A. 2003. Corrigendum to: The manuscript of Abel’s Parisian memoir found in its entirety. HM 30, 94–95.Google Scholar
  35. Dieudonné, J. 1974. Cours de géométrie algébrique. 2 vols. Presses Universitaires de France, Paris. Engl. trl. as History of algebraic geometry: an outline of the history and development of algebraic geometry. Wadsworth, Belmont 1985.Google Scholar
  36. Dirichlet, P.G.L. 1835. Über eine neue Anwendung bestimmter Integrale auf die Summation endlicher oder unendlicher Reihen. Berlin Abh. 391–407 in Werke 1, 239–256.Google Scholar
  37. Dirichlet, P.G.L. 1837b. Beweis des Satzes, dass jede unbegrenzte arithmetische Progression [etc]. Berlin Abh. 45–81 in Werke 1, 313–342.Google Scholar
  38. Dirichlet, P.G.L. 1839, 1840. Recherches sur diverses applications de l’analyse infinitésimale à la théorie des nombres. JfM 19, 324–369 and JfM 21, 1–12; 134–155 in Werke 1, 411–496.Google Scholar
  39. Dirichlet, P.G.L. 1841a. Untersuchungen über die Theorie der complexen Zahlen (Auszug aus einer in der Akademie der Wissenschaften am 27. Mai 1841 gelesenen Abhandlung). Berlin Berichte 190–194 also in JfM 22, 375–378 in Ges. Werke 1, 503–508.Google Scholar
  40. Dirichlet, P.G.L. 1841b. Untersuchungen über die Theorie der complexen Zahlen. Berlin Abh. 141–161 in Ges. Werke 1, 509–532.Google Scholar
  41. Dirichlet, P.G.L. 1852. Gedächtnisrede auf Carl Gustav Jacob Jacobi. Berlin Abh. 1–27 in Werke 2, 225–252 also in Jacobi, Ges. Werke 1, 2–28.Google Scholar
  42. Dupin, F.P.C. 1813. Développements de géométrie. Courcier, Paris.Google Scholar
  43. Eisenstein, G. 1844. Bemerkungen zu den elliptischen und Abelschen Transcendenten. JfM 27, 185–191 in Math. Werke 1, 28–34.Google Scholar
  44. Eisenstein, G. 1847a. Genaue Untersuchung der unendliche Doppelproducte, aus welchen die elliptischen Functionen als Quotienten zusammengesetzt sind. JfM 35, 153–274 in Math. Abh. 213–334; in Math. Werke 1, 357–478.Google Scholar
  45. Eisenstein, G. 1847b. Mathematische Abhandlungen. With a Preface by Gauss. Reimer, Berlin.Google Scholar
  46. Ellis, R. L. 1846 Report on the recent progress of analysis (Theory of the comparison of transcendentals). British Association Report, 34–90 in Math. Writings, 238–323.Google Scholar
  47. Euler, L. 1758. Du mouvement de rotation des corps solides autour d’un axe variable. Hist. Acad. Sci. Berlin 14 (1765) 154–193 in O.O. (2) 8, 200–235.Google Scholar
  48. Euler, L. 1760. De motu corporis ad duo centra virium fixa attracti. Novi Comm. Acad. Sci. Petrop. 10 (1766) 207–242 in O.O. (2) 6, 209–246.Google Scholar
  49. Euler, L. 1762b. Problème. Un corps étant attiré en raison réciproque quarrée des distances vers deux points fixes donnés [etc]. Mem. Acad. Sci. Berlin 16 (1767) 228–249 in O.O. (2) 6, 274–293.Google Scholar
  50. Euler, L. 1763. De motu corporis ad duo centra virium fixa attracti. Novi Comm. Acad. Sci. Petrop. 11 (1767) 152–184 in O.O. (2) 6, 247–273.Google Scholar
  51. Gauss, C.F. 1832. Theoria residuorum biquadraticorum. Commentatio secunda. Comm. Soc. Göttingen 7, 89–148 in Werke 2, 93–148.Google Scholar
  52. Goldfeld, D. 1985. Gauss’s class number problem for imaginary quadratic fields. Bull. AMS (2) 13, 23–45.Google Scholar
  53. Goldstein, C., Schappacher, N. and J. Schwermer. (eds). 2007. The shaping of arithmetic after C.F. Gauss’s Disquisitiones arithmeticae. Springer, New York. Éditions de la maison des sciences de l’homme. Paris.Google Scholar
  54. Göpel A. 1847. Theorie transcendentium Abelianarum primi ordinis adumbratio levis. JfM 35, 277–312.MATHGoogle Scholar
  55. Gray, J.J. 1992. Cauchy and elliptic integrals. Cahiers d’histoire et philosophie des sciences 40, 19–47.Google Scholar
  56. Gross, R. and D. Zagier. 1983. Points de Heegner et dérivées de fonctions L. CR 297, 85–87.MathSciNetMATHGoogle Scholar
  57. Hancock, H. 1897. The historical development of Abelian functions up to the time of Riemann. British Association Report, 246–286.Google Scholar
  58. Heegner, K. 1952. Diophantische Analysis und Modulfunktionen. Math. Z. 56, 227–253.Google Scholar
  59. Houzel, Ch. 1978. Fonctions elliptiques et intégrales abéliennes. In (Dieudonné 1978, 2, 1–113).Google Scholar
  60. Ireland, K. and M. Rosen. 1982. A classical introduction to modern number theory. Springer, New York. 2nd ed. Springer, New York 1990.Google Scholar
  61. Jacobi, C.G.J. 1832b. Considerationes generales de transcendentibus Abelianis. JfM 9, 394–403 in Ges. Werke 2, 5–16.Google Scholar
  62. Jacobi, C.G.J. 1835. De functionibus duarum variabilium quadrupliciter periodicis, quibus theoria transcendentium Abelianarum innititur. JfM 13, 55–78 in Ges. Werke 2, 23–50.Google Scholar
  63. Jacobi, C.G.J. 1835–1836. Theorie der elliptischen Functionen, aus den Eigenschaften der Thetareihen abgeleitet. Nach einer Vorlesung Jacobis in dessen Auftrag ausgearbeitet von C. W. Borchardt. Ms. Ges. Werke 1, 497–538.Google Scholar
  64. Jacobi, C.G.J. 1839. Note von der geodätischen Linie auf einem Ellipsoid [etc]. JfM 19, 309–313 in Ges. Werke 2, 578–63.Google Scholar
  65. Jacobi, C.G.J. 1842. Demonstratio nova theorematis Abeliani. JfM 24, 28–35 in Ges. Werke 2, 67–74.Google Scholar
  66. Jacobi, C.G.J. 1846a. Extrait d’une lettre adressée à M. Hermite. JfM 32, 176–181 in Ges. Werke 2, 115–120.Google Scholar
  67. Jacobi, C.G.J. 1846b. Über eine neue Methode zur Integration der hyper–elliptischen Differentialgleichungen. JfM 32, 220–226 in Ges. Werke 2, 135–144.Google Scholar
  68. Jacobi, C.G.J. 1847. Zur Geschiche der elliptischen und Abelschen Transcendenten. Ms. Ges. Werke 2, 516–521.Google Scholar
  69. Jacobi, C.G.J. 1850 Sur la rotation d’un corps. Extrait d’une lettre adressée à l’Académie des sciences de Paris. JfM 39, 293–350 in Ges. Werke 2, 289–352.Google Scholar
  70. Jacobi, C.G.J. 1866. Vorlesungen über Dynamik. Clebsch, A. (ed.). G. Reimer, Berlin. 2nd ed. G. Reimer, Berlin 1881. In Ges. Werke. Supplementband. Lottner, G. (ed.). 1–290.Google Scholar
  71. Jürgensen, C. 1839. Sur la summation des transcendantes à différentielles algébriques. JfM 19, 113–116.MATHGoogle Scholar
  72. Jürgensen, C. 1842. Remarques générales sur les transcendantes à différentielles algébriques. JfM 23, 126–141.MATHGoogle Scholar
  73. Kleiman, S. 2004. What is Abel’s theorem anyway? In (Laudal and Piene 2004, 395–440).Google Scholar
  74. Klein, C.F. and A. Sommerfeld. 1898. Über die Theorie des Kreisels. 4 vols. Teubner, Leipzig.Google Scholar
  75. Koenigsberger, L. 1879. Zur Geschichte der Theorie der elliptischen Transcendenten in den Jahren 1826–1829. Teubner, Leipzig.Google Scholar
  76. Koenigsberger, L. 1904a. Carl Gustav Jacob Jacobi. JDMV 13, 405–435.Google Scholar
  77. Koenigsberger, L. (ed.). 1904b. Carl Gustav Jacob Jacobi: Festschrift zur Feier der hundertsten Wiederkehr seines Geburtstages. Mit einem Bildnis und dem Faksimile eines Briefes. Teubner, Leipzig.MATHGoogle Scholar
  78. Kronecker, L. 1880. Ueber den vierten Gauss’schen Beweis des Reciprocitätsgesetzes für die quadratischen Reste. Monatsberichte Berlin, 686–698; 854–860 in Werke 4, 275–294.Google Scholar
  79. Kronecker, L. 1889. Summirung der Gauss’schen Reihen \(\sum _{h=0}^{h=n-1}{e}^{\frac{2{h}^{2}\pi i} {n} }\). JfM 105, 267–268 in Werke 4, 295–300.Google Scholar
  80. Lagrange, J.L. 1766–1769. Recherche sur le mouvement d’un corps qui est attiré vers deux centres fixes. Misc Taurin. 4, 188–243 in Oeuvres 2, 67–121.Google Scholar
  81. Lagrange, J.-L. 1775–1777. Recherches d’arithmétique. Nouv. Mém. Acad. Berlin (1773) 265–310; Nouv. Mém. Acad. Berlin (1775) 323–356 in Oeuvres 3, 695–795.Google Scholar
  82. Landau, E. 1910. Über das Nichtverschwinden der Dirichletschen Reihen, welche komplexen Charakteren entsprechen. Math. Ann. 70, 69–78.MathSciNetCrossRefGoogle Scholar
  83. Landau, E. 1958. Elementary number theory. Chelsea, New York.MATHGoogle Scholar
  84. Legendre, A.-M. 1792. Mémoire sur les transcendantes elliptiques, où l’on donne des méthodes faciles pour comparer et évaluer ces transcendantes [etc]. Du Pont & Firmin–Didot, Paris. Engl. trl. in Leybourn, T. New Series of the Mathematical Repository 2 (1809) 1–45.Google Scholar
  85. Legendre, A.-M. 1811–1817. Exercises de calcul intégral. 3 vols. Courcier, Paris.Google Scholar
  86. Legendre, A.-M. 1825–1832. Traité des fonctions elliptiques et des intégrales euleriennes. 3 vols. Huzard–Courcier, Paris. [Vol. 3 consists of 3 supplements dated 1828, 1829, 1832]Google Scholar
  87. Legendre, A.-M. 1832. [Extract from a letter to Crelle]. JfM 8, 413.Google Scholar
  88. Lindelöf, E. 1905. Le calcul des résidus et ses applications à la théorie des fonctions. Gauthier–Villars, Paris.Google Scholar
  89. Liouville, J. 1880. Leçons sur les fonctions doublement périodiques faites en 1847. Prèmière partie. Borchardt, C.W. (ed.). JfM 88, 277–311.Google Scholar
  90. Lützen, J. 1990. Joseph Liouville, 1809–1882. Master of pure and applied mathematics. Springer, New York.MATHGoogle Scholar
  91. Minding, F. 1842. Propositiones quaedam de integralibus functionum algebraicarum unius variabilis, e principiis Abelianis derivatae. JfM 23, 255–274.MATHGoogle Scholar
  92. Mordell, L. J. 1918. On a simple summation of the series \(\sum _{s=0}^{n-1}{e}^{2{s}^{2}\pi i/n }\). Messenger of Mathematics 48, 54–56.Google Scholar
  93. Ore, O. 1957. Niels Henrik Abel: Mathematician extraordinary. University of Minnesota Press, Minneapolis, Minn. Rep. Chelsea, New York 1974.Google Scholar
  94. Peiffer, J. 1983. Joseph Liouville (1809–1882): ses contributions à la théorie des fonctions d’une variable complexe. Revue d’histoire des sciences 36, 209–248.MathSciNetMATHCrossRefGoogle Scholar
  95. Poinsot, L. 1834. Théorie nouvelle de la rotation des corps. Bachelier, Paris.Google Scholar
  96. Poisson, S. D. 1811e. Traité de dynamique. 2 vols. Courcier, Paris.Google Scholar
  97. Richelot, F. 1842. Ueber die Integration eines merkwürdigen Systems Differentialgleichungen. JfM 23, 354–369MATHGoogle Scholar
  98. Richelot, F. 1843. Einige neue Integralgleichungen des Jacobischen Systems Differentialgleichungen. JfM 25, 97–118.MATHGoogle Scholar
  99. Rosenhain, G. 1844–1845. Exercitationes analyticae in theorema Abelianum de integralibus functionum algebraicarum. JfM 28, 249–278; 29 (1845) 1–18.Google Scholar
  100. Rosenhain, G. 1851. Mémoire sur les fonctions de deux variables et à quatre periodes, qui sont les inverses des intégrales ultraelliptiques de la premiere classe. Mémoires présentés par divers savants 11, 361–468.Google Scholar
  101. Rueb, A.S. 1834. Specimen inaugurale de motu gyratorio corporis rigidi, nulla vi acceleratrice sollicitati. Inauguraldissertation. Trajecti ad Rhenum [Utrecht].Google Scholar
  102. Scharlau, W. and H. Opolka. 1985. From Fermat to Minkowski. Lectures on the theory of numbers and its historical development. Springer, Berlin.MATHCrossRefGoogle Scholar
  103. Schlesinger, L. 1905. Über den Begriff der analytischen Funktion bei Jacobi und seine Bedeutung für die Entwicklung der Funktionentheorie. Biblioteca Mathematica (3) 6, 88–96.Google Scholar
  104. Schlesinger, L. 1912. Über Gauss’s Arbeiten zur Funktionentheorie. Göttingen Nachr. (Beiheft) in Gauss Werke 10. 2, 1–222. (Separate pagination).Google Scholar
  105. Schoeneberg, B. 1974. Elliptic modular functions. Springer, Berlin.MATHCrossRefGoogle Scholar
  106. Serre, J.–P. 1973. A course in arithmetic. Springer, New York. Rep. Springer, New York 1996. [Not in Oeuvres].Google Scholar
  107. Stark, H.M. 1967. A complete determination of the complex quadratic fields of class–number one. Michigan mathematics Journal 14, 1–27.MATHCrossRefGoogle Scholar
  108. Stark, H.M. 1971. A transcendence theorem for class number problems. Annals of mathematics (2) 94, 153–173.Google Scholar
  109. Weil, A. 1974. Two lectures on number theory, past and present. L’Enseignement mathématique (2) 20, 87–110 in Coll. Papers 3, 279–302.Google Scholar
  110. Weil, A. 1976. Elliptic functions according to Eisenstein and Kronecker. Springer, New York.MATHCrossRefGoogle Scholar
  111. Whittaker, E.T. 1904. A treatise on the analytical dynamics of particles & rigid bodies. CUP, Cambridge. 4th ed. CUP, Cambridge 1937. Rep. CUP, Cambridge 1988.Google Scholar
  112. Wilson, C. 1994. The three–body problem. In (Grattan–Guinness 1994, 1, 1054–1062).Google Scholar
  113. Zagier, D. 1984. L–series of elliptic curves, the Birch–Swinnerton–Dyer conjecture, and the class number problem of Gauss. Notices AMS 31, 739–743.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Umberto Bottazzini
    • 1
  • Jeremy Gray
    • 2
  1. 1.Dipertimento di Matematica ‘F. Enriques’Università degli Studi di MilanoMilanoItaly
  2. 2.Department of Mathematics and StatisticsOpen UniversityMilton KeynesUK

Personalised recommendations