Defining the Potential of MSCs with a Prenatal Large Animal Model

  • Graça Almeida-Porada
  • Christopher D. Porada
  • Esmail D. Zanjani
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

An experimental model system that allows the assessment of the full ­differentiative potential of human mesenchymal stromal/stem cells (MSC) under normal physiological conditions, in the absence of genetic or injury-induced ­dysfunction, could reveal their true capabilities and also provide a valuable tool to dissect the pathways governing differentiation and fate reprogramming. The naturally occurring stem cell migratory patterns, the availability of expanding homing and engraftment sites, and the presence of tissue/organ-specific signals combine to make the developing mammalian fetus an ideal setting for MSCs to display their full biological potential. In addition to these characteristics, the early gestational age fetus also possesses the unique advantage of being relatively immunologically naive, making it possible to achieve engraftment and long-term persistence of MSCs and other stem cells from not only allogeneic but xenogeneic donors as well. In this chapter, we describe the advantages of the pre-immune fetus as a model for studying human MSCs and discuss results we have obtained thus far with a large animal (sheep) fetal model.

Keywords

Surfactant Albumin Germinal Arena 

References

  1. 1.
    Friedenstein AJ (1990) Osteogenic stem cells in the bone marrow. Bone Miner Res 7:243–272Google Scholar
  2. 2.
    Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340PubMedCrossRefGoogle Scholar
  3. 3.
    Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S et al (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27(9):1460–1466PubMedCrossRefGoogle Scholar
  4. 4.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for cellular therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRefGoogle Scholar
  5. 5.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  6. 6.
    de la Garza-Rodea AS, van der Velde I, Boersma H, Goncalves MA, van Bekkum DW, de Vries AA et al (2011) Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 20(2):217–231 [Research Support, Non-U.S. Gov’t]PubMedCrossRefGoogle Scholar
  7. 7.
    Hishikawa K, Miura S, Marumo T, Yoshioka H, Mori Y, Takato T et al (2004) Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer. Biochem Biophys Res Commun 317(4):1103–1107PubMedCrossRefGoogle Scholar
  8. 8.
    Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14(4–6):311–324PubMedCrossRefGoogle Scholar
  9. 9.
    Nakamura T, Shiojima S, Hirai Y, Iwama T, Tsuruzoe N, Hirasawa A et al (2003) Temporal gene expression changes during adipogenesis in human mesenchymal stem cells. Biochem Biophys Res Commun 303(1):306–312PubMedCrossRefGoogle Scholar
  10. 10.
    Choong PF, Mok PL, Cheong SK, Leong CF, Then KY (2007) Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy 9(2):170–183PubMedCrossRefGoogle Scholar
  11. 11.
    Franco Lambert AP, Fraga Zandonai A, Bonatto D, Cantarelli Machado D, Pegas Henriques JA (2009) Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77(3):221–228PubMedCrossRefGoogle Scholar
  12. 12.
    Kennea NL, Waddington SN, Chan J, O’Donoghue K, Yeung D, Taylor DL et al (2009) Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 8(7):1069–1079PubMedCrossRefGoogle Scholar
  13. 13.
    Kim S, Honmou O, Kato K, Nonaka T, Houkin K, Hamada H et al (2006) Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res 1123(1):27–33PubMedCrossRefGoogle Scholar
  14. 14.
    Moscoso I, Centeno A, Lopez E, Rodriguez-Barbosa JI, Santamarina I, Filgueira P et al (2005) Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplant Proc 37(1):481–482PubMedCrossRefGoogle Scholar
  15. 15.
    Tokcaer-Keskin Z, Akar AR, Ayaloglu-Butun F, Terzioglu-Kara E, Durdu S, Ozyurda U et al (2009) Timing of induction of cardiomyocyte differentiation for in vitro cultured mesenchymal stem cells: a perspective for emergencies. Can J Physiol Pharmacol 87(2):143–150PubMedCrossRefGoogle Scholar
  16. 16.
    Wang T, Xu Z, Jiang W, Ma A (2006) Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol 109(1):74–81PubMedCrossRefGoogle Scholar
  17. 17.
    Xie XJ, Wang JA, Cao J, Zhang X (2006) Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin 27(9):1153–1158PubMedCrossRefGoogle Scholar
  18. 18.
    Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J et al (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 229(7):623–631Google Scholar
  19. 19.
    Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H (2006) In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy 8(3):215–227PubMedCrossRefGoogle Scholar
  20. 20.
    Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R (2011) Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res 6(3):215–225PubMedCrossRefGoogle Scholar
  21. 21.
    Vater C, Kasten P, Stiehler M (2011) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 7(2):463–477PubMedCrossRefGoogle Scholar
  22. 22.
    Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR et al (2005) Liver-specific gene expression in mesenchymal stem cells is induced by liver cells. World J Gastroenterol 11(29):4497–4504PubMedGoogle Scholar
  23. 23.
    Piryaei A, Valojerdi MR, Shahsavani M, Baharvand H (2011) Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev 7(1):103–118PubMedCrossRefGoogle Scholar
  24. 24.
    Sgodda M, Aurich H, Kleist S, Aurich I, Konig S, Dollinger MM et al (2007) Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 313(13):2875–2886PubMedCrossRefGoogle Scholar
  25. 25.
    Snykers S, De Kock J, Tamara V, Rogiers V (2011) Hepatic differentiation of mesenchymal stem cells: in vitro strategies. Methods Mol Biol 698:305–314PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao Q, Ren H, Li X, Chen Z, Zhang X, Gong W et al (2009) Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy 11(4):414–426PubMedCrossRefGoogle Scholar
  27. 27.
    Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 10(20):3016–3020PubMedGoogle Scholar
  28. 28.
    Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW (2005) In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330(4):1299–1305PubMedCrossRefGoogle Scholar
  29. 29.
    Akiyama Y, Radtke C, Kocsis JD (2002) Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22(15):6623–6630PubMedGoogle Scholar
  30. 30.
    Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ et al (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 99(4):2199–2204PubMedCrossRefGoogle Scholar
  31. 31.
    Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96(19):10711–10716PubMedCrossRefGoogle Scholar
  32. 32.
    Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15(7):1794–1804PubMedCrossRefGoogle Scholar
  33. 33.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98PubMedCrossRefGoogle Scholar
  34. 34.
    Kanazawa H, Fujimoto Y, Teratani T, Iwasaki J, Kasahara N, Negishi K et al (2011) Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One 6(4):e19195PubMedCrossRefGoogle Scholar
  35. 35.
    Tao XR, Li WL, Su J, Jin CX, Wang XM, Li JX et al (2009) Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyte-like cells in injured livers of SCID mice. J Cell Biochem 108(3):693–704PubMedCrossRefGoogle Scholar
  36. 36.
    Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H et al (2009) Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 29(3):356–365PubMedCrossRefGoogle Scholar
  37. 37.
    Mouiseddine M, Francois S, Semont A, Sache A, Allenet B, Mathieu N et al (2007) Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol 80(Spec No 1):S49–S55PubMedCrossRefGoogle Scholar
  38. 38.
    Badillo AT, Redden RA, Zhang L, Doolin EJ, Liechty KW (2007) Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhances wound closure. Cell Tissue Res 329(2):301–311PubMedCrossRefGoogle Scholar
  39. 39.
    Ishikane S, Yamahara K, Sada M, Harada K, Kodama M, Ishibashi-Ueda H et al (2010) Allogeneic administration of fetal membrane-derived mesenchymal stem cells attenuates acute myocarditis in rats. J Mol Cell Cardiol 49(5):753–761PubMedCrossRefGoogle Scholar
  40. 40.
    Weil BR, Manukyan MC, Herrmann JL, Wang Y, Abarbanell AM, Poynter JA et al (2010) Mesenchymal stem cells attenuate myocardial functional depression and reduce systemic and myocardial inflammation during endotoxemia. Surgery 148(2):444–452PubMedCrossRefGoogle Scholar
  41. 41.
    Tang J, Wang J, Guo L, Kong X, Yang J, Zheng F et al (2010) Mesenchymal stem cells modified with stromal cell-derived factor 1 alpha improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells 29(1):9–19PubMedCrossRefGoogle Scholar
  42. 42.
    Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J et al (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 30(22):2722–2732PubMedCrossRefGoogle Scholar
  43. 43.
    Perin EC, Silva GV, Assad JA, Vela D, Buja LM, Sousa AL et al (2008) Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 44(3):486–495PubMedCrossRefGoogle Scholar
  44. 44.
    Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M et al (2007) Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol 42(1):88–97PubMedCrossRefGoogle Scholar
  45. 45.
    Pulavendran S, Vignesh J, Rose C (2010) Differential anti-inflammatory and anti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells in carbon tetrachloride-induced liver injury in mice. Int Immunopharmacol 10(4):513–519PubMedCrossRefGoogle Scholar
  46. 46.
    Chen A, Siow B, Blamire AM, Lako M, Clowry GJ (2010) Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res 5(3):255–266PubMedCrossRefGoogle Scholar
  47. 47.
    Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H et al (2010) Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 1343:226–235PubMedCrossRefGoogle Scholar
  48. 48.
    Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20PubMedCrossRefGoogle Scholar
  49. 49.
    Satake K, Lou J, Lenke LG (2004) Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine (Phila Pa 1976) 29(18):1971–1979CrossRefGoogle Scholar
  50. 50.
    Li Z, Liu HY, Lei QF, Zhang C, Li SN (2011) Improved motor function in dko mice by intravenous transplantation of bone marrow-derived mesenchymal stromal cells. Cytotherapy 13(1):69–77PubMedCrossRefGoogle Scholar
  51. 51.
    Feng SW, Lu XL, Liu ZS, Zhang YN, Liu TY, Li JL et al (2008) Dynamic distribution of bone marrow-derived mesenchymal stromal cells and change of pathology after infusing into mdx mice. Cytotherapy 10(3):254–264PubMedCrossRefGoogle Scholar
  52. 52.
    Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J et al (2007) Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 16(5):695–706PubMedCrossRefGoogle Scholar
  53. 53.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49PubMedCrossRefGoogle Scholar
  54. 54.
    Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30(8):896–904PubMedCrossRefGoogle Scholar
  55. 55.
    Keene CD, Ortiz-Gonzalez XR, Jiang Y, Largaespada DA, Verfaillie CM, Low WC (2003) Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant 12(3):201–213PubMedGoogle Scholar
  56. 56.
    Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66PubMedCrossRefGoogle Scholar
  57. 57.
    Jiang WH, Ma AQ, Zhang YM, Han K, Liu Y, Zhang ZT et al (2005) Migration of intravenously grafted mesenchymal stem cells to injured heart in rats. Sheng Li Xue Bao 57(5):566–572PubMedGoogle Scholar
  58. 58.
    Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z (2009) Migration of bone marrow-derived ­mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen 17(2):185–191PubMedCrossRefGoogle Scholar
  59. 59.
    Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730–738PubMedCrossRefGoogle Scholar
  60. 60.
    Flake AW, Zanjani ED (1999) In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers. Blood 94(7):2179–2191PubMedGoogle Scholar
  61. 61.
    Zanjani ED, Anderson WF (1999) Prospects for in utero human gene therapy. Science 285(5436):2084–2088PubMedCrossRefGoogle Scholar
  62. 62.
    Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172(4379):603–606PubMedCrossRefGoogle Scholar
  63. 63.
    Billingham RE, Brent L, Medawar PB (1954) Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Lond B Biol Sci 143(910):58–80PubMedCrossRefGoogle Scholar
  64. 64.
    Billingham RE, Brent L, Medawar PB, Sparrow EM (1954) Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proc R Soc Lond B Biol Sci 143(910):43–58PubMedCrossRefGoogle Scholar
  65. 65.
    Binns RM (1967) Bone marrow and lymphoid cell injection of the pig foetus resulting in transplantation tolerance or immunity, and immunoglobulin production. Nature 214(5084):179–180PubMedCrossRefGoogle Scholar
  66. 66.
    Almeida-Porada G, Porada C, Zanjani ED (2001) Adult stem cell plasticity and methods of detection. Rev Clin Exp Hematol 5(1):26–41PubMedCrossRefGoogle Scholar
  67. 67.
    Almeida-Porada G, Porada C, Zanjani ED (2004) Plasticity of human stem cells in the fetal sheep model of human stem cell transplantation. Int J Hematol 79(1):1–6PubMedCrossRefGoogle Scholar
  68. 68.
    Almeida-Porada G, Zanjani ED (2004) A large animal noninjury model for study of human stem cell plasticity. Blood Cells Mol Dis 32(1):77–81PubMedCrossRefGoogle Scholar
  69. 69.
    Flake AW, Zanjani ED (1993) In utero transplantation of hematopoietic stem cells. Crit Rev Oncol Hematol 15(1):35–48PubMedCrossRefGoogle Scholar
  70. 70.
    Zanjani ED, Almeida-Porada G, Flake AW (1995) Retention and multilineage expression of human hematopoietic stem cells in human-sheep chimeras. Stem Cells 13(2):101–111PubMedCrossRefGoogle Scholar
  71. 71.
    Zanjani ED, Almeida-Porada G, Flake AW (1996) The human/sheep xenograft model: a large animal model of human hematopoiesis. Int J Hematol 63(3):179–192PubMedCrossRefGoogle Scholar
  72. 72.
    Zanjani ED, Almeida-Porada G, Ascensao JL, MacKintosh FR, Flake AW (1997) Transplantation of hematopoietic stem cells in utero. Stem Cells 15(Suppl 1):79–92, discussion 3PubMedCrossRefGoogle Scholar
  73. 73.
    Colletti EJ, Airey JA, Liu W, Simmons PJ, Zanjani ED, Porada CD et al (2009) Generation of tissue-specific cells from MSC does not require fusion or donor-to-host mitochondrial/membrane transfer. Stem Cell Res 2(2):125–138 [Research Support, N.I.H., Extramural]PubMedCrossRefGoogle Scholar
  74. 74.
    Barbera A, Jones OW 3rd, Zerbe GO, Hobbins JC, Battaglia FC, Meschia G (1995) Early ultrasonographic detection of fetal growth retardation in an ovine model of placental insufficiency. Am J Obstet Gynecol 173(4):1071–1074PubMedCrossRefGoogle Scholar
  75. 75.
    Barry JS, Anthony RV (2008) The pregnant sheep as a model for human pregnancy. Theriogenology 69(1):55–67PubMedCrossRefGoogle Scholar
  76. 76.
    Beierle EA, Langham MR Jr, Cassin S (1996) In utero lung growth of fetal sheep with diaphragmatic hernia and tracheal stenosis. J Pediatr Surg 31(1):141–146, discussion 6–7PubMedCrossRefGoogle Scholar
  77. 77.
    Jenkin G, Young IR (2004) Mechanisms responsible for parturition; the use of experimental models. Anim Reprod Sci 82–83:567–581PubMedCrossRefGoogle Scholar
  78. 78.
    Morrison JL (2008) Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol 35(7):730–743PubMedCrossRefGoogle Scholar
  79. 79.
    Stelnicki EJ, Hoffman WY, Vanderwall K, Harrison MR, Foster R, Longaker MT (1997) A new in utero model for lateral facial clefts. J Craniofac Surg 8(6):460–465PubMedCrossRefGoogle Scholar
  80. 80.
    Cahill RN, Kimpton WG, Washington EA, Holder JE, Cunningham CP (1999) The ontogeny of T cell recirculation during foetal life. Semin Immunol 11(2):105–114PubMedCrossRefGoogle Scholar
  81. 81.
    Jennings RW, Adzick NS, Longaker MT, Duncan BW, Scheuenstuhl H, Hunt TK (1991) Ontogeny of fetal sheep polymorphonuclear leukocyte phagocytosis. J Pediatr Surg 26(7):853–855PubMedCrossRefGoogle Scholar
  82. 82.
    Miyasaka M, Morris B (1988) The ontogeny of the lymphoid system and immune responsiveness in sheep. Prog Vet Microbiol Immunol 4:21–55PubMedGoogle Scholar
  83. 83.
    Osburn BI (1981) The ontogeny of the ruminant immune system and its significance in the understanding of maternal-fetal-neonatal relationships. Adv Exp Med Biol 137:91–103PubMedGoogle Scholar
  84. 84.
    Osburn BI (1988) Ontogeny of host defense systems and congenital infections. Prog Clin Biol Res 281:15–32PubMedGoogle Scholar
  85. 85.
    Raghunathan R, Miller ME, Wuest C, Faust J (1984) Ontogeny of the immune system: fetal lamb as a model. Pediatr Res 18(5):451–456PubMedCrossRefGoogle Scholar
  86. 86.
    Sawyer M, Moe J, Osburn BI (1978) Ontogeny of immunity and leukocytes in the ovine fetus and elevation of immunoglobulins related to congenital infection. Am J Vet Res 39(4):643–648PubMedGoogle Scholar
  87. 87.
    Silverstein AM, Prendergast RA, Kraner KL (1964) Fetal response to antigenic stimulus. Iv. Rejection of skin homografts by the fetal lamb. J Exp Med 119:955–964PubMedCrossRefGoogle Scholar
  88. 88.
    Silverstein AM, Uhr JW, Kraner KL, Lukes RJ (1963) Fetal response to antigenic stimulus. II. Antibody production by the fetal lamb. J Exp Med 117:799–812PubMedCrossRefGoogle Scholar
  89. 89.
    Skopal-Chase JL, Pixley JS, Torabi A, Cenariu MC, Bhat A, Thain DS et al (2009) Immune ontogeny and engraftment receptivity in the sheep fetus. Fetal Diagn Ther 25(1):102–110PubMedCrossRefGoogle Scholar
  90. 90.
    Simmons PJ, Gronthos S, Zannettino A, Ohta S, Graves S (1994) Isolation, characterization and functional activity of human marrow stromal progenitors in hemopoiesis. Prog Clin Biol Res 389:271–280PubMedGoogle Scholar
  91. 91.
    Chamberlain J, Yamagami T, Colletti E, Theise ND, Desai J, Frias A et al (2007) Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology (Baltimore, MD) 46(6):1935–1945CrossRefGoogle Scholar
  92. 92.
    Almeida-Porada G., ElShabrawy D, Simmons P, Ascensao JL, Zanjani ED (2001) Clonally derived MSCs populations are able to differentiate into blood liver and skin cells. Blood 98:abstract, 791aGoogle Scholar
  93. 93.
    Feldmann G, Scoazec JY, Racine L, Bernuau D (1992) Functional hepatocellular heterogeneity for the production of plasma proteins. Enzyme 46(1–3):139–154PubMedGoogle Scholar
  94. 94.
    Krishna M, Lloyd RV, Batts KP (1997) Detection of albumin messenger RNA in hepatic and extrahepatic neoplasms. A marker of hepatocellular differentiation. Am J Surg Pathol 21(2):147–152PubMedCrossRefGoogle Scholar
  95. 95.
    Racine L, Scoazec JY, Moreau A, Chassagne P, Bernuau D, Feldmann G (1995) Distribution of albumin, alpha 1-inhibitor 3 and their respective mRNAs in periportal and perivenous rat hepatocytes isolated by the digitonin-collagenase technique. Biochem J 305(Pt 1):263–268PubMedGoogle Scholar
  96. 96.
    Almeida-Porada G, El Shabrawy D, Porada C, Zanjani ED (2002) Differentiative potential of human metanephric mesenchymal cells. Exp Hematol 30(12):1454–1462PubMedCrossRefGoogle Scholar
  97. 97.
    Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A et al (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24(11):1402–1411PubMedCrossRefGoogle Scholar
  98. 98.
    Nava S, Westgren M, Jaksch M, Tibell A, Broome U, Ericzon BG et al (2005) Characterization of cells in the developing human liver. Differentiation 73(5):249–260PubMedCrossRefGoogle Scholar
  99. 99.
    Khoor A, Stahlman MT, Gray ME, Whitsett JA (1994) Temporal-spatial distribution of SP-B and SP-C proteins and mRNAs in developing respiratory epithelium of human lung. J Histochem Cytochem 42(9):1187–1199PubMedCrossRefGoogle Scholar
  100. 100.
    Barar J, Campbell L, Hollins AJ, Thomas NP, Smith MW, Morris CJ et al (2007) Cell selective glucocorticoid induction of caveolin-1 and caveolae in differentiating pulmonary alveolar epithelial cell cultures. Biochem Biophys Res Commun 359(2):360–366PubMedCrossRefGoogle Scholar
  101. 101.
    Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16(18):5583–5592PubMedGoogle Scholar
  102. 102.
    Sarnat HB, Born DE (1999) Synaptophysin immunocytochemistry with thermal intensification: a marker of terminal axonal maturation in the human fetal nervous system. Brain Dev 21(1):41–50PubMedCrossRefGoogle Scholar
  103. 103.
    Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103(5):1283–1288PubMedCrossRefGoogle Scholar
  104. 104.
    Quesenberry PJ, Aliotta JM (2010) Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev 62(12):1141–1148 [Research Support, N.I.H., Extramural Review]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Graça Almeida-Porada
    • 1
  • Christopher D. Porada
    • 1
  • Esmail D. Zanjani
    • 2
  1. 1.Department of Regenerative MedicineWake Forest Institute for Regenerative MedicineWinston-SalemUSA
  2. 2.Department of Animal Biotechnology and Department of MedicineUniversity of NevadaRenoUSA

Personalised recommendations